In the present study, ultrasound (400 W, U), microwave heating (75 ℃ for 15 min, M) and ultrasound synergized with microwave heating (UM) pretreatments of whey protein isolate (WPI) were applied to investigate and compare their influence on structure, physicochemical and functional characteristic of transglutaminase (TGase)-induced WPI. From the results of size exclusion chromatography, it could be seen that all three physical pretreatments could promote the formation of polymers in TGase cross-linked WPI, whose polymer amounts were increased by the order of U, UM and M pretreatment. Among three physical methods, M pretreatment had the strongest effect on structure and functional characteristics of TGase-induced WPI. Furthermore, compared with TGase-induced WPI, α-helix and β-turn of M-treated TGase-induced WPI (M-WPI-TGase) were reduced by 7.86% and 2.93%, whereas its β-sheet and irregular curl were increased by 15.37% and 7.23%. Zeta potential, emulsion stability and foaming stability of M-WPI-TGase were increased by 7.8%, 59.27% and 28.95%, respectively. This experiment exhibited that M was a more effective pretreatment method than U, UM for WPI, which could promote its reaction with TGase and improve its functional properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818559PMC
http://dx.doi.org/10.1016/j.ultsonch.2022.105935DOI Listing

Publication Analysis

Top Keywords

tgase-induced wpi
16
ultrasound synergized
8
synergized microwave
8
structure functional
8
functional properties
8
whey protein
8
protein isolate
8
microwave heating
8
three physical
8
wpi
7

Similar Publications

In the present study, ultrasound (400 W, U), microwave heating (75 ℃ for 15 min, M) and ultrasound synergized with microwave heating (UM) pretreatments of whey protein isolate (WPI) were applied to investigate and compare their influence on structure, physicochemical and functional characteristic of transglutaminase (TGase)-induced WPI. From the results of size exclusion chromatography, it could be seen that all three physical pretreatments could promote the formation of polymers in TGase cross-linked WPI, whose polymer amounts were increased by the order of U, UM and M pretreatment. Among three physical methods, M pretreatment had the strongest effect on structure and functional characteristics of TGase-induced WPI.

View Article and Find Full Text PDF

Whey protein isolate (WPI) was hydrolyzed by alcalase and trypsin for three hydrolysis degrees (DHs), followed by transglutaminase (TGase) induced cross-linking. The prepared products were measured for surface hydrophobicity and emulsifying and foaming properties, as well as in vitro antigenicity for α-lactalbumin and β-lactoglobulin. The results indicated that enzymatic hydrolysis of WPI mostly resulted in WPI hydrolysates with significantly decreased antigenicity of α-lactalbumin and β-lactoglobulin, especially in the case of a higher DH value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!