In the present study, ultrasound (400 W, U), microwave heating (75 ℃ for 15 min, M) and ultrasound synergized with microwave heating (UM) pretreatments of whey protein isolate (WPI) were applied to investigate and compare their influence on structure, physicochemical and functional characteristic of transglutaminase (TGase)-induced WPI. From the results of size exclusion chromatography, it could be seen that all three physical pretreatments could promote the formation of polymers in TGase cross-linked WPI, whose polymer amounts were increased by the order of U, UM and M pretreatment. Among three physical methods, M pretreatment had the strongest effect on structure and functional characteristics of TGase-induced WPI. Furthermore, compared with TGase-induced WPI, α-helix and β-turn of M-treated TGase-induced WPI (M-WPI-TGase) were reduced by 7.86% and 2.93%, whereas its β-sheet and irregular curl were increased by 15.37% and 7.23%. Zeta potential, emulsion stability and foaming stability of M-WPI-TGase were increased by 7.8%, 59.27% and 28.95%, respectively. This experiment exhibited that M was a more effective pretreatment method than U, UM for WPI, which could promote its reaction with TGase and improve its functional properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818559 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2022.105935 | DOI Listing |
Ultrason Sonochem
February 2022
Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, PR China. Electronic address:
In the present study, ultrasound (400 W, U), microwave heating (75 ℃ for 15 min, M) and ultrasound synergized with microwave heating (UM) pretreatments of whey protein isolate (WPI) were applied to investigate and compare their influence on structure, physicochemical and functional characteristic of transglutaminase (TGase)-induced WPI. From the results of size exclusion chromatography, it could be seen that all three physical pretreatments could promote the formation of polymers in TGase cross-linked WPI, whose polymer amounts were increased by the order of U, UM and M pretreatment. Among three physical methods, M pretreatment had the strongest effect on structure and functional characteristics of TGase-induced WPI.
View Article and Find Full Text PDFFood Funct
March 2019
Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
Whey protein isolate (WPI) was hydrolyzed by alcalase and trypsin for three hydrolysis degrees (DHs), followed by transglutaminase (TGase) induced cross-linking. The prepared products were measured for surface hydrophobicity and emulsifying and foaming properties, as well as in vitro antigenicity for α-lactalbumin and β-lactoglobulin. The results indicated that enzymatic hydrolysis of WPI mostly resulted in WPI hydrolysates with significantly decreased antigenicity of α-lactalbumin and β-lactoglobulin, especially in the case of a higher DH value.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!