Phage display-based discovery of cyclic peptides against the broad spectrum bacterial anti-virulence target CsrA.

Eur J Med Chem

Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany. Electronic address:

Published: March 2022

Small macrocyclic peptides are promising candidates for new anti-infective drugs. To date, such peptides have been poorly studied in the context of anti-virulence targets. Using phage display and a self-designed peptide library, we identified a cyclic heptapeptide that can bind the carbon storage regulator A (CsrA) from Yersinia pseudotuberculosis and displace bound RNA. This disulfide-bridged peptide, showed an IC50 value in the low micromolar range. Upon further characterization, cyclisation was found to be essential for its activity. To increase metabolic stability, a series of disulfide mimetics were designed and a redox-stable 1,4-disubstituted 1,2,3-triazole analogue displayed activity in the double-digit micromolar range. Further experiments revealed that this triazole peptidomimetic is also active against CsrA from Escherichia coli and RsmA from Pseudomonas aeruginosa. This study provides an ideal starting point for medicinal chemistry optimization of this macrocyclic peptide and might pave the way towards broad-acting virulence modulators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114148DOI Listing

Publication Analysis

Top Keywords

micromolar range
8
phage display-based
4
display-based discovery
4
discovery cyclic
4
cyclic peptides
4
peptides broad
4
broad spectrum
4
spectrum bacterial
4
bacterial anti-virulence
4
anti-virulence target
4

Similar Publications

Triphenylphosphine-modified cyclometalated iridium complexes as mitochondria-targeting anticancer agents with enhanced selectivity.

Bioorg Chem

January 2025

Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China. Electronic address:

This study presents the development and evaluation of triphenylphosphine-modified cyclometalated iridium complexes as selective anticancer agents targeting mitochondria. By leveraging the mitochondrial localization capability of the triphenylphosphine group, these complexes displayed promising cytotoxicity in the micromolar range (3.12-7.

View Article and Find Full Text PDF

Despite the various benefits of chlorpromazine, its misuse and overdose may lead to severe side effects, therefore, creating a user-friendly point-of-care device for monitoring the levels of chlorpromazine drug to manage the potential side effects and ensure the effective and safe use of the medication is highly desired. In this report, we have demonstrated a simple and scalable manufacturing process for the development of a 3D-printed conducting microneedle array-based electrochemical point-of-care device for the minimally invasive sensing of chlorpromazine. We used an inkjet printer to print the carbon and silver ink onto a customized 3D-printed ultrasharp microneedle array for the preparation of counter, working, and reference electrodes.

View Article and Find Full Text PDF

Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.

View Article and Find Full Text PDF

Intracellular Delivery of Proteins by Protein-Recognizing Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States.

Intracellular delivery of proteins can directly impact dysregulated and dysfunctional proteins and is a key step in the fast growing field of protein therapeutics. The vast majority of protein-delivery systems enter cells through endocytic pathways, but endosomal escape is a difficult and inefficient process, demanding fundamentally different methods of delivery. We report ultrasmall cationic molecularly imprinted nanoparticles that bind protein targets with high specificity through their uniquely distributed surface lysine groups.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infections in babies across the world. Irrespective of progress in the development of RSV vaccines, effective small molecule drugs are still not available on the market. Based on our previous data we designed and synthesized triazole-linked coumarin-monoterpene hybrids and showed that they are indeed effective in inhibiting the RSV replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!