Thigmostimulation alters anatomical and biomechanical properties of bioenergy sorghum stems.

J Mech Behav Biomed Mater

Department of Mechanical Engineering, Texas A&M University, United States. Electronic address:

Published: March 2022

Sorghum [Sorghum bicolor (L.) Moench] is a tropical grass that can be used as a bioenergy crop but commonly suffers from stem structural failure (lodging) when exposed to mechanical stimuli, such as rain and wind. Mechanical stimulation can trigger adaptive growth in plant stems (thigmomorphogenesis) by activating regulatory networks of hormones, proteins, transcription factors, and targeted genes, which ultimately alters their physiology, morphology, and biomechanical properties. The goals of this study are 1) to investigate differences in the morpho-anatomical-biomechanical properties of internodes from control and mechanically-stimulated plants and 2) to examine whether the changes also depend on the plant developmental stages at the time of stimulation. The sweet sorghum cultivar Della was grown in a greenhouse under two growth conditions: with and without mechanical stimulation. The mechanical stimulation involved periodic bending of the stems in one direction during a seven-week growth period. At maturity, the anatomical traits of the stimulated and non-stimulated stems were characterized, including internode lengths and diameters, and biomechanical properties, including elastic (instantaneous) modulus, flexural stiffness, strength, and time-dependent compliance under bending. The morpho-anatomical and biomechanical characteristics of two internodes of the stems that were at different stages of development at the time of mechanical stimulation were examined. Younger internodes were more responsive and experienced more pronounced changes in length due to the stimulation when compared to the older internodes. Statistical analyses showed differences between the stimulated and non-stimulated stems in terms of both their anatomical and biomechanical properties. Mechanical stimulation produced shorter internodes with slightly larger diameters, as well as softer (more compliant) and stronger stems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2022.105090DOI Listing

Publication Analysis

Top Keywords

mechanical stimulation
20
biomechanical properties
16
anatomical biomechanical
8
stimulated non-stimulated
8
non-stimulated stems
8
stems
7
stimulation
7
mechanical
6
biomechanical
5
properties
5

Similar Publications

By volume, cement concrete is one of the most widely used construction materials in the world. This requires a significant amount of Portland cement, and the cement industry, in turn, causes a significant amount of CO emissions. Therefore, the development of concrete with a reduced cement content is becoming an urgent problem for countries with a significant level of production and consumption of concrete.

View Article and Find Full Text PDF

Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed light on the nuclear partners cooperating with altered lamins, we focused on Src tyrosine kinase, known to phosphorylate proteins of the nuclear lamina.

View Article and Find Full Text PDF

A leadless pacemaker (LP) is a modern alternative to a transvenous pacemaker, allowing certain complications to be avoided; however, some cannot be eliminated. To highlight the essential role of advanced speckle-tracking echocardiography (STE) in diagnosing pacing-induced cardiomyopathy (PICM) caused by an LP. A 79-year-old male, after LP implantation a year earlier, was admitted due to heart failure (HF).

View Article and Find Full Text PDF

Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (, , , and ) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs).

View Article and Find Full Text PDF

The Interplay Between Muscular Activity and Pattern Recognition of Electro-Stimulated Haptic Cues During Normal Walking: A Pilot Study.

Bioengineering (Basel)

December 2024

School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak District, Seoul 06974, Republic of Korea.

This pilot study explored how muscle activation influences the pattern recognition of tactile cues delivered using electrical stimulation (ES) during each 10% window interval of the normal walking gait cycle (GC). Three healthy adults participated in the experiment. After identifying the appropriate threshold, ES as the haptic cue was applied to the gastrocnemius lateralis (GL) and biceps brachii (BB) of participants walking on a treadmill.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!