Background And Objective: Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities.
Methods: In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient.
Results: Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method.
Conclusions: Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2022.106658 | DOI Listing |
Ophthalmol Sci
November 2024
Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
Objective: Detecting and measuring changes in longitudinal fundus imaging is key to monitoring disease progression in chronic ophthalmic diseases, such as glaucoma and macular degeneration. Clinicians assess changes in disease status by either independently reviewing or manually juxtaposing longitudinally acquired color fundus photos (CFPs). Distinguishing variations in image acquisition due to camera orientation, zoom, and exposure from true disease-related changes can be challenging.
View Article and Find Full Text PDFDeformable image registration (DIR) is an enabling technology in many diagnostic and therapeutic tasks. Despite this, DIR algorithms have limited clinical use, largely due to a lack of benchmark datasets for quality assurance during development. To support future algorithm development, here we introduce our first-of-its-kind abdominal CT DIR benchmark dataset, comprising large numbers of highly accurate landmark pairs on matching blood vessel bifurcations.
View Article and Find Full Text PDFIn the realm of 3D measurement, photometric stereo excels in capturing high-frequency details but suffers from accumulated errors that lead to low-frequency distortions in the reconstructed surface. Conversely, light field (LF) reconstruction provides satisfactory low-frequency geometry but sacrifices spatial resolution, impacting high-frequency detail quality. To tackle these challenges, we propose a photometric stereoscopic light field measurement (PSLFM) scheme that harnesses the strengths of both methods.
View Article and Find Full Text PDFPLoS One
January 2025
Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
Introduction: Post-stroke movement disorders are common, especially upper limb dysfunction, which seriously affects the physical and mental health of stroke patients. With the continuous development of intelligent technology, robot-assisted therapy has become a research hotspot in the upper limb rehabilitation of stroke patients in recent years. Many scholars have also integrated robot-assisted therapy with other interventions to improve rehabilitation outcomes.
View Article and Find Full Text PDFJ Am Med Inform Assoc
January 2025
Information Systems and Business Administration, Johannes Gutenberg University, Mainz 55128, Germany.
Objectives: Explanations help to understand why anomaly detection algorithms identify data as anomalous. This study evaluates whether robustly standardized explanation scores correctly identify the implausible variables that make cancer data anomalous.
Materials And Methods: The dataset analyzed consists of 18 587 truncated real-world cancer registry records containing 8 categorical variables describing patients diagnosed with bladder and lung tumors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!