In the present study, we explored the interaction of bovine serum albumin (BSA) with oxidized graphene oxide (GO) nanosheets. Nanosheets, synthesized with 4, 6, 8, 10 and 12 wt equivalents of KMnO as oxidant, were coded as GO-4, GO-6, GO-8, GO-10 and GO-12, respectively. After incubating sheets with a fixed concentration of BSA at room temperature, interactions were monitored with time. The analysis is based on UV-vis spectroscopy, fluorescence quenching, dynamic light scattering (DLS), small angle neutron scattering (SANS), Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) techniques. Binding of BSA over sheets was recorded in the following order; GO-04 >> GO-06 > GO-08 > GO-10 ≈ GO-12. Our observations suggest that these interactions are largely regulated by the availability of pure graphitic domains and density of oxygen functionalities on sheet surface. This led us to the conclusion that GO-protein interactions can be minimized by modulating the extent of sheet oxidation. Moreover, we show that adsorption of proteins as colloidal aggregates contributes to improved biosafety of sheets. The protein molecule did not exhibit depletive changes in its conformation. However, from the viewpoint of drug delivery applications, density of oxygen groups must be optimized for maximizing the loading efficiency of oxidized sheets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.112367DOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
oxide nanosheets
8
bovine serum
8
serum albumin
8
density oxygen
8
oxidation state
4
state graphene
4
nanosheets drives
4
drives interaction
4
interaction proteins
4

Similar Publications

Hierarchical Porous Aggregate-Enabled Chromatography-Inspired Single-Sensor E-Nose for Volatile Monitoring.

ACS Sens

January 2025

School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.

Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.

View Article and Find Full Text PDF

Rare-earth oxide promoted Pd electrocatalyst for formic acid oxidation.

Dalton Trans

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.

The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.

View Article and Find Full Text PDF

Among the various types of pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) is the most lethal and aggressive, due to its tendency to metastasize quickly and has a particularly low five-year survival rate. Carbohydrate antigen 19-9 (CA 19-9) is the only biomarker approved by the Food and Drug Administration for PDAC and has been a focal point in diagnostic strategies, but its sensitivity and specificity are not sufficient for early and accurate detection. To address this issue, we introduce a synergistic approach combining CA 19-9 levels with a graphene oxide (GO)-based blood test.

View Article and Find Full Text PDF

High performance humidity sensor based on a graphene oxide-chitosan composite.

Phys Chem Chem Phys

January 2025

Temperature and Humidity Metrology, CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi, 110012, India.

In this study, we have proposed an advanced humidity sensor based on a composite of chitosan (CS) and graphene oxide (GO), prepared by the drop casting method. Graphene oxide-chitosan (GO-CS) films with varying volumetric ratios, along with pure GO and CS films, were prepared and extensively characterized using XRD, Raman, FTIR, SEM, XPS, and water contact angle to study their structural and morphological properties. Comparative analysis of humidity sensing parameters of all prepared films revealed that the film with a volumetric ratio of 4 : 1 (GOCS-2) performs best among all of them, which is attributed to the synergistic interaction between GO and CS.

View Article and Find Full Text PDF

Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!