Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration.

Gene

Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. Electronic address:

Published: April 2022

The limited regenerative capacity in mammals has serious implications for cardiac tissue damage. Meanwhile, zebrafish has a high regenerative capacity, but the regulation of the heart healing process has yet to be elucidated. The dynamic nature of cardiac regeneration requires consideration of the inherent temporal dimension of this process. Here, we conducted a systematic review to find genes that define the regenerative cell state of the zebrafish heart. We then performed an in silico temporal gene regulatory network analysis using transcriptomic data from the zebrafish heart regenerative process obtained from databases. In this analysis, the genes found in the systematic review were used to represent the final cell state of the transition process from a non-regenerative cell state to a regenerative state. We found 135 transcription factors driving the cellular state transition process during zebrafish cardiac regeneration, including Hand2, Nkx2.5, Tbx20, Fosl1, Fosb, Junb, Vdr, Wt1, and Tcf21 previously reported for playing a key role in tissue regeneration. Furthermore, we demonstrate that most regulators are activated in the first days post-injury, indicating that the transition from a non-regenerative to a regenerative state occurs promptly.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2022.146242DOI Listing

Publication Analysis

Top Keywords

zebrafish heart
12
cell state
12
regulatory network
8
transcription factors
8
factors driving
8
regenerative capacity
8
cardiac regeneration
8
systematic review
8
state transition
8
transition process
8

Similar Publications

Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.

View Article and Find Full Text PDF

Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish .

Int J Nanomedicine

December 2024

Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China.

Introduction: The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood.

Methods: This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos.

View Article and Find Full Text PDF

Spns1-dependent endocardial lysosomal function drives valve morphogenesis through Notch1-signaling.

iScience

December 2024

Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland.

Autophagy-lysosomal degradation is a conserved homeostatic process considered to be crucial for cardiac morphogenesis. However, both its cell specificity and functional role during heart development remain unclear. Here, we introduced zebrafish models to visualize autophagic vesicles and track their temporal and cellular localization in the larval heart.

View Article and Find Full Text PDF

Cardiac regeneration involves the interplay of complex interactions between many different cell types, including cardiomyocytes. The exact mechanism that enables cardiomyocytes to undergo dedifferentiation and proliferation to replace lost cells has been intensely studied. Here we report a single nuclear RNA sequencing profile of the injured zebrafish heart and identify distinct cardiomyocyte populations in the injured heart.

View Article and Find Full Text PDF

Here, we present a protocol for conditional mutagenesis in zebrafish germ cells using Tol2 transposon and a CRISPR-Cas9-based plasmid system. We describe steps for conditional mutagenesis plasmid construction, zebrafish embryo microinjection, and screening for green fluorescence in the heart. This protocol is simple to execute, time efficient, and multifunctional, enabling the disruption of genes in zebrafish germ cells to be conducted with ease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!