The increase in livestock production creates a serious problem of managing animal waste and by-products. Among the wide range of waste valorization methods available, anaerobic digestion is very promising. It is a form of material recycling that also produces renewable energy in the form of biogas, which is reminiscent of energy recycling. The effluent and digestate from the anaerobic digestion process need to be processed further. These materials are widely used in agriculture due to their composition. Both the liquid and solid fractions of digestate are high in nitrogen, making them a valuable source for plants. Before soil or foliar application, conditioning (e.g., with inorganic acids) and neutralization (e.g., with potassium hydroxide) is required to eliminate odorous compounds and microorganisms. Various methods of conducting the process by anaerobic digestion (use of additives increasing activity of microorganisms, co-digestion, multiple techniques of substrate preparation) and the possibility of controlling process parameters such as optimal C/N ratio (15-30), optimal temperature (psychrophilic (<20 °C), mesophilic (35-37 °C) and thermophilic (55 °C) for microorganism activity ensure high efficiency of the process. Literature data describing tests of various digestates on different plants prove high efficiency, determined by yield increase (even by 28%), nitrogen uptake (by 20%) or phosphorus recovery rate (by 43%) or increase of biometric parameters (e.g., leaf area).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.133799DOI Listing

Publication Analysis

Top Keywords

anaerobic digestion
16
animal waste
8
challenges perspectives
4
anaerobic
4
perspectives anaerobic
4
digestion
4
digestion animal
4
waste fertilizer
4
fertilizer application
4
application digestate
4

Similar Publications

Polymicrobial bacteremia including Ignatzschineria indica caused by myiasis in a female patient with carcinoma of unknown primary.

J Infect Chemother

January 2025

Department of Clinical Laboratory, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan; Department of Infectious Diseases, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan. Electronic address:

A 70-year-old woman with a 6-month history of poor hygiene presented with a right occipital mass, ulceration, and neck swelling. The right occipital region was infested with approximately 100 fly maggots, and the mass contained a foul-smelling abscess. Maggots were removed, and the mass was drained, irrigated, and dressed with padding.

View Article and Find Full Text PDF

Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue.

View Article and Find Full Text PDF

The biomethanization of lignocellulosic wastes remains an inefficient and complex process due to lignin structures that hinder the hydrolysis step, therefore, some treatments are required. This work describes the addition of an enriched microbial consortium in the biomethanization of rice straw. The experiment was carried out in lab batch reactors following two strategies: (i) pretreatment of rice straw for 48 h using the enriched microbial consortium (dilution 1:100), and (ii) addition of this enriched microbial consortium (dilution 1:100) directly to the anaerobic reactors (bioaugmentation).

View Article and Find Full Text PDF

() is known to cause intra-abdominal and anaerobic bloodstream infections. However, clinical insights and information on antimicrobial susceptibility in infections are limited. This study aimed to elucidate the clinical characteristics and antimicrobial susceptibility of infections.

View Article and Find Full Text PDF

Microbial activity of the inoculum determines the impact of activated carbon, magnetite and zeolite on methane production.

Sci Total Environ

January 2025

CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal. Electronic address:

The conversion of organic matter to methane through anaerobic digestion (AD) process can be enhanced by different materials. However, literature reports show inconsistent results on the effect of materials in different AD systems. In this study, we evaluated the influence of the inoculum's activity on methane production (MP) efficiency in the presence of different materials (activated carbon (AC), magnetite (Mag), and zeolite (Zeo)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!