Chloroacetamide herbicides (CAAHs) are important herbicides that were widely used to control agricultural weeds. However, their mass applications have seriously contaminated environment, and they are toxic to living beings. CAAHs are easy to enter anoxic environments such as subsoil, wetland sediment, and groundwater, where CAAHs are mainly degraded by anaerobic organisms. To date, there are no research on the anaerobic degradation of CAAHs by pure isolate and toxicity of anaerobic metabolites of CAAHs. In this study, the anaerobic degradation kinetics and metabolites of CAAHs by an anaerobic isolate BAD-10 and the toxicity of anaerobic metabolites were studied. Isolate BAD-10 could degrade alachlor, acetochlor, propisochlor, butachlor, pretilachlor and metolachlor with the degradation kinetics fitting the pseudo-first-order kinetics equation. The degradation rates of CAAHs were significantly affected by the length of N-alkoxyalkyl groups, the shorter the N-alkoxyalkyl groups, the higher the degradation rates. Four metabolites 2-ethyl-6-methyl-N-(ethoxymethyl)-acetanilide (EMEMA), N-(2-methyl-6-ethylphenyl)-acetamide (MEPA), N-2-ethylphenyl acetamide and 2-ethyl-N-carboxyl aniline were identified during acetochlor degradation, and an anaerobic catabolic pathway of acetochlor was proposed. The toxicity of EMEMA and EMPA for zebrafish, Arabidopsis and Chlorella ellipsoidea were obviously lower than that of acetochlor, indicating that the anaerobic degradation of acetochlor by isolate BAD-10 is a detoxification process. The work reveals the anaerobic degradation kinetics and catabolic pathway of CAAHs and highlights a potential application of Proteiniclasticum sediminis BAD-10 for bioremediation of CAAHs residue-contaminated environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.112859 | DOI Listing |
Microbiol Spectr
January 2025
Department of Pharmacology, Showa University Graduate School of Medicine, Shinagawa, Tokyo, Japan.
Unlabelled: The concept of genome-microbiome interactions, in which the microenvironment determined by host genetic polymorphisms regulates the local microbiota, is important in the pathogenesis of human disease. In otolaryngology, the resident bacterial microbiota is reportedly altered in non-infectious ear diseases, such as otitis media pearls and exudative otitis media. We hypothesized that a single-nucleotide polymorphism in the ATP-binding cassette sub-family C member 11 () gene, which determines earwax properties, regulates the ear canal microbiota.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany.
Soil-transmitted helminths (STH) are widespread, with Ascaris lumbricoides infecting millions globally. Malaria and STH co-infections are common in co-endemic regions. Artemisinin derivatives (ARTs)-artesunate, artemether, and dihydroartemisinin-are standard malaria treatments and are also known to influence the energy metabolism of parasites, tumors, and immune cells.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Electronic address:
Organic carbon can influence nitrogen removal during the anaerobic ammonia oxidation (anammox) process. Propionate, a common organic compound in pretreated wastewater, its impacts on mixotrophic anammox bacteria and the underlying mechanisms have not been fully elucidated. This study investigated the core metabolism and shift in behavior patterns of mixotrophic Candidatus Brocadia sapporoensis (AMXB) under long-term propionate exposure.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia.
Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!