Berberine (BBR) is a promising botanical pesticide that can reduce the enzyme activity of secreted cutinase from fungal pathogens. However, only less than 15% of total activity was prohibited. Herein we researched BBR's self-aggregation in water via molecular dynamics simulations, and further investigated the effect of dispersant on blocking the aggregation together with the impact on cutinase. Strong hydrophobic interactions were found between adjacent BBR molecules, and these molecules formed clustered conformations at different BBR concentrations. Interestingly, one of the tested dispersants, sodium stearate (ST), is able to insert into BBR clusters and form stable interaction until the end of simulation, resulting in decreased hydrophobic strength in the BBR-ST cluster. More importantly, supply of ST with BBR resulted in BBR's reinforced hydrophobic interactions between BBR and the catalytic center of cutinase, which led to the inactivated mode of cutinase. Finally, wet experiments demonstrated that combined application of BBR and ST indeed resulted in a synergy-like effect on reducing the activity of cutinase. Overall, our findings revealed the mechanism of the reinforced effect of BBR against cutinase when supplying ST as dispersant, suggesting an undiscovered role of ST in enhancing the efficiency of this botanical pesticide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.1c01120DOI Listing

Publication Analysis

Top Keywords

cutinase supplying
8
sodium stearate
8
bbr
8
botanical pesticide
8
hydrophobic interactions
8
cutinase
7
molecular basis
4
basis reinforced
4
reinforced berberine
4
berberine cutinase
4

Similar Publications

Small-scale bioreactors that are affordable and accessible would be of major benefit to the research community. In previous work, an open-source, automated bioreactor system was designed to operate up to the 30 mL scale with online optical monitoring, stirring, and temperature control, and this system, dubbed Chi.Bio, is now commercially available at a cost that is typically 1-2 orders of magnitude less than commercial bioreactors.

View Article and Find Full Text PDF

ANCUT1, a novel thermoalkaline cutinase from Aspergillus nidulans and its application on hydroxycinnamic acids lipophilization.

Biotechnol Lett

June 2024

Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CP 04510, Ciudad de México, Mexico.

One of the four cutinases encoded in the Aspergillus nidulans genome, ANCUT1, is described here. Culture conditions were evaluated, and it was found that this enzyme is produced only when cutin is present in the culture medium, unlike the previously described ANCUT2, with which it shares 62% amino acid identity. The differences between them include the fact that ANCUT1 is a smaller enzyme, with experimental molecular weight and pI values of 22 kDa and 6, respectively.

View Article and Find Full Text PDF

Background: Modern genome editing enables rapid construction of genetic variants, which are further developed in Design-Build-Test-Learn cycles. To operate such cycles in high throughput, fully automated screening, including cultivation and analytics, is crucial in the Test phase. Here, we present the required steps to meet these demands, resulting in an automated microbioreactor platform that facilitates autonomous phenotyping from cryo culture to product assay.

View Article and Find Full Text PDF

Extracellular production of target proteins simplifies downstream processing due to obsolete cell disruption. However, optimal combinations of a heterologous protein, suitable signal peptide, and secretion host can currently not be predicted, resulting in large strain libraries that need to be tested. On the experimental side, this challenge can be tackled by miniaturization, parallelization, and automation, which provide high-throughput screening data.

View Article and Find Full Text PDF

Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1.

J Hazard Mater

September 2022

Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China; School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, PR China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China. Electronic address:

Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!