Cotton being the major fiber crop across the world is exposed to numerous biotic and abiotic stresses. Genetic transformation of cotton is vital to meet the world's food, feed and fiber demands. Genetic manipulation by randomly transferring the genes emanate variable gene expression. Targeted gene insertion by latest genome editing tools results in predictable expression of genes at a specified location. Gene stacking technology emerged as an adaptive strategy to combat biotic and abiotic stresses by integrating 2-3 genes simultaneously and at a specific site to avoid variable gene expression at diverse locations. This study explains the development of cotton's founder transformants to be used as a base line for multiple gene stacking projects. We introduced Cre and PhiC31 mediated recombination sites to specify the locus of incoming genes. CRISPR-Cas9 gene was integrated for developing CRISPR based founder lines of cotton. Cas9 gene along with gRNA was integrated to target Rep (replication) region of cotton leaf curl virus. Replication region of virus was specifically targeted to diminish further proliferation and preventing the virus to develop new strains. To successfully develop these primary transformants, a model transformation system has been optimized with the red color visualization (DS-Red). Following red color transformation system, three baselines with recombination specified site (Rec), targeted replication region (Rep) and Cas9 founder lines have been developed. These founder transformants are useful for developing recombinase mediated and CRISPR/Cas9 based originator lines of cotton. Moreover, these transformants will set up a base system for all the recombinase mediated gene stacking projects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812945PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263219PLOS

Publication Analysis

Top Keywords

gene stacking
16
founder transformants
12
recombinase mediated
12
replication region
12
gene
9
mediated gene
8
biotic abiotic
8
abiotic stresses
8
variable gene
8
gene expression
8

Similar Publications

2-Ethylhexyl diphenyl phosphate (EHDPP) is a replacement flame-retardant commonly found in several environmental matrices and human biospecimens. Although some adverse effects of EHDPP have been identified, the endocrine-disrupting effects of EHDPP and its key metabolites on the human estrogen receptor (ER) are largely unknown. Herein, we report for the first time that EHDPP, at concentrations found in the environment and humans, significantly promoted estrogenic activity and synergized with 17β-estradiol-induced ER transactivation.

View Article and Find Full Text PDF

Stacking fermentation is critical in sauce-flavor production, but winter production often sees abnormal fermentations, like Waistline and Sub-Temp fermentation, affecting yield and quality. This study used three machine learning models (Logistic Regression, KNN, and Random Forest) combined with multi-omics (metagenomics and flavoromics) to develop a classification model for abnormal fermentation. SHAP analysis identified 13 Sub-Temp Fermentation and 9 Waistline microbial biomarkers, along with 9 Sub-Temp Fermentation and 12 Waistline flavor biomarkers.

View Article and Find Full Text PDF

Antarctic Krill Protein Amyloid Fibrils as a Novel Iron Carrier for the Improvement of Iron Deficiency.

J Agric Food Chem

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Iron fortification with food supplements remains the primary dietary strategy for improving iron deficiency anemia (IDA). This study used Antarctic krill protein for fibrillar design to form an Antarctic krill protein amyloid fibril (AKAF). The results indicated that peptides generated by proteolysis were a prerequisite for fibril assembly, forming elongated fibril structures and cross-linking upon heating.

View Article and Find Full Text PDF

Complex traits influenced by multiple genes pose challenges for marker-assisted selection (MAS) in breeding. Genomic selection (GS) is a promising strategy for achieving higher genetic gains in quantitative traits by stacking favorable alleles into elite cultivars. Resistance to Fusarium oxysporum f.

View Article and Find Full Text PDF

Waxy maize is highly preferred diet in developing countries due to its high amylopectin content. Enriching amylopectin in biofortified maize meets food security and fulfils the demand of rising industrial applications, especially bioethanol. The mutant waxy1 (wx1) gene is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!