Objective: The purpose of this study was to establish a deep-learning model for segmenting the cervical lymph nodes of oral cancer patients and diagnosing metastatic or non-metastatic lymph nodes from contrast-enhanced computed tomography (CT) images.

Methods: CT images of 158 metastatic and 514 non-metastatic lymph nodes were prepared. CT images were assigned to training, validation, and test datasets. The colored images with lymph nodes were prepared together with the original images for the training and validation datasets. Learning was performed for 200 epochs using the neural network U-net. Performance in segmenting lymph nodes and diagnosing metastasis were obtained.

Results: Performance in segmenting metastatic lymph nodes showed recall of 0.742, precision of 0.942, and F1 score of 0.831. The recall of metastatic lymph nodes at level II was 0.875, which was the highest value. The diagnostic performance of identifying metastasis showed an area under the curve (AUC) of 0.950, which was significantly higher than that of radiologists (0.896).

Conclusions: A deep-learning model was created to automatically segment the cervical lymph nodes of oral squamous cell carcinomas. Segmentation performances should still be improved, but the segmented lymph nodes were more accurately diagnosed for metastases compared with evaluation by humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499194PMC
http://dx.doi.org/10.1259/dmfr.20210515DOI Listing

Publication Analysis

Top Keywords

lymph nodes
40
cervical lymph
12
lymph
10
nodes
10
deep-learning model
8
nodes oral
8
non-metastatic lymph
8
nodes prepared
8
training validation
8
performance segmenting
8

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Objectives: To assess the usefulness of sentinel lymph node biopsy (SLNB) in patients with early-stage oral squamous cell carcinoma (OSCC).

Materials And Methods: Seventy-five patients (mean age 62 years) diagnosed with cT1-2 N0 underwent SLNB with Tc, lymphoscintigraphy/SPECT-CT, and gamma probe detection with intraoperative histological examination of the resected sentinel lymph nodes (SLNs). Elective neck dissection was performed during the same surgical procedure of primary tumor resection when malignant deposits were detected microscopically.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) are organized immune cell aggregates that arise in chronic inflammatory conditions. In cancer, TLS are associated with better prognosis and enhanced response to immunotherapy, making these structures attractive therapeutic targets. However, the mechanisms regulating TLS formation and maintenance in cancer are incompletely understood.

View Article and Find Full Text PDF

Pulmonary large cell carcinoma (LCC) is a rare and aggressive subtype of non-small cell lung cancer (NSCLC) with poor prognosis. Surgical resection remains the cornerstone of treatment for resectable LCC; however, its efficacy is limited in advanced stages, necessitating adjuvant therapies to reduce postoperative recurrence risk. Recent advances in immunotherapy have shown promising survival benefits.

View Article and Find Full Text PDF

Introduction: T-lymphopenia (TLP) is a frequently observed condition in cancer patients, often exacerbated by conventional chemo/radiotherapy, which impairs the efficacy of subsequent immune checkpoint blockade (ICB) therapy. This study aimed to understand the impact of TLP on ICB responsiveness and explore potential therapeutic strategies to enhance antitumor immunity.

Methods: To investigate ICB responsiveness depending on the severity of TLP, first, we established TLP mouse models that mimic clinically observed mild and severe TLP through thymectomy and anti-Thy1-induced peripheral T cell depletion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!