Objective: The purpose of this study was to establish a deep-learning model for segmenting the cervical lymph nodes of oral cancer patients and diagnosing metastatic or non-metastatic lymph nodes from contrast-enhanced computed tomography (CT) images.
Methods: CT images of 158 metastatic and 514 non-metastatic lymph nodes were prepared. CT images were assigned to training, validation, and test datasets. The colored images with lymph nodes were prepared together with the original images for the training and validation datasets. Learning was performed for 200 epochs using the neural network U-net. Performance in segmenting lymph nodes and diagnosing metastasis were obtained.
Results: Performance in segmenting metastatic lymph nodes showed recall of 0.742, precision of 0.942, and F1 score of 0.831. The recall of metastatic lymph nodes at level II was 0.875, which was the highest value. The diagnostic performance of identifying metastasis showed an area under the curve (AUC) of 0.950, which was significantly higher than that of radiologists (0.896).
Conclusions: A deep-learning model was created to automatically segment the cervical lymph nodes of oral squamous cell carcinomas. Segmentation performances should still be improved, but the segmented lymph nodes were more accurately diagnosed for metastases compared with evaluation by humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499194 | PMC |
http://dx.doi.org/10.1259/dmfr.20210515 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFHead Neck
January 2025
Service of Oral and Maxillofacial Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
Objectives: To assess the usefulness of sentinel lymph node biopsy (SLNB) in patients with early-stage oral squamous cell carcinoma (OSCC).
Materials And Methods: Seventy-five patients (mean age 62 years) diagnosed with cT1-2 N0 underwent SLNB with Tc, lymphoscintigraphy/SPECT-CT, and gamma probe detection with intraoperative histological examination of the resected sentinel lymph nodes (SLNs). Elective neck dissection was performed during the same surgical procedure of primary tumor resection when malignant deposits were detected microscopically.
Tertiary lymphoid structures (TLS) are organized immune cell aggregates that arise in chronic inflammatory conditions. In cancer, TLS are associated with better prognosis and enhanced response to immunotherapy, making these structures attractive therapeutic targets. However, the mechanisms regulating TLS formation and maintenance in cancer are incompletely understood.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
Pulmonary large cell carcinoma (LCC) is a rare and aggressive subtype of non-small cell lung cancer (NSCLC) with poor prognosis. Surgical resection remains the cornerstone of treatment for resectable LCC; however, its efficacy is limited in advanced stages, necessitating adjuvant therapies to reduce postoperative recurrence risk. Recent advances in immunotherapy have shown promising survival benefits.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Introduction: T-lymphopenia (TLP) is a frequently observed condition in cancer patients, often exacerbated by conventional chemo/radiotherapy, which impairs the efficacy of subsequent immune checkpoint blockade (ICB) therapy. This study aimed to understand the impact of TLP on ICB responsiveness and explore potential therapeutic strategies to enhance antitumor immunity.
Methods: To investigate ICB responsiveness depending on the severity of TLP, first, we established TLP mouse models that mimic clinically observed mild and severe TLP through thymectomy and anti-Thy1-induced peripheral T cell depletion.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!