In 2019, 254 samples were collected from five aquifer systems to evaluate perfluoroalkyl and polyfluoroalkyl substance (PFAS) occurrence in groundwater used as a source of drinking water in the eastern United States. The samples were analyzed for 24 PFAS, major ions, nutrients, trace elements, dissolved organic carbon (DOC), volatile organic compounds (VOCs), pharmaceuticals, and tritium. Fourteen of the 24 PFAS were detected in groundwater, with 60 and 20% of public-supply and domestic wells, respectively, containing at least one PFAS detection. Concentrations of tritium, chloride, sulfate, DOC, and manganese + iron; percent urban land use within 500 m of the wells; and VOC and pharmaceutical detection frequencies were significantly higher in samples containing PFAS detections than in samples with no detections. Boosted regression tree models that consider 57 chemical and land-use variables show that tritium concentration, distance to the nearest fire-training area, percentage of urban land use, and DOC and VOC concentrations are the top five predictors of PFAS detections, consistent with the hydrologic position, geochemistry, and land use being important controls on PFAS occurrence in groundwater. Model results indicate that it may be possible to predict PFAS detections in groundwater using existing data sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970425PMC
http://dx.doi.org/10.1021/acs.est.1c04795DOI Listing

Publication Analysis

Top Keywords

pfas detections
12
perfluoroalkyl polyfluoroalkyl
8
groundwater source
8
source drinking
8
drinking water
8
water eastern
8
eastern united
8
united states
8
pfas
8
pfas occurrence
8

Similar Publications

Per- and polyfluoroalkylated substances (PFAS) in the feathers and excreta of Gentoo penguins (Pygoscelis papua) from the Antarctic Peninsula.

Sci Total Environ

December 2024

Centro de Investigación para la Sustentabilidad (CIS-UNAB) & Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Av. Alemania 281, Temuco, Chile.

Per- and polyfluoroalkyl substances (PFAS) exhibit widespread global distribution, extending to remote regions including Antarctica. Despite potential adverse effects on seabirds, PFAS exposure among Antarctic penguins remains poorly studied. We investigated the occurrence of 29 PFAS compounds in feathers and excreta of Gentoo penguins (Pygoscelis papua) from Fildes Bay, Antarctica.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have been detected in lake ecosystems globally, even in remote areas at high altitudes. Compared to plain lakes with short water change cycles and significant human influence, plateau lakes are primarily tectonic closed or semi-closed lakes with steep terrain. Their long water change cycles lead to an obvious cumulative effect on pollutants.

View Article and Find Full Text PDF

Lower toxicity of HFPO-DA compared to its predecessor PFOA to the earthworm Eisenia fetida: Evidence from oxidative stress and transcriptomic analysis.

J Hazard Mater

December 2024

College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China. Electronic address:

Hexafluoropropylene oxide dimer acid (HFPO-DA), an emerging perfluoroalkyl substance (PFAS) that is replacing traditional PFASs, has a wide range of industrial applications and has been detected globally in the environment. However, it remains unclear whether HFPO-DA, is genuinely less toxic than perfluorooctanoic acid (PFOA) in terms of soil environmental hazards. Therefore, this study aimed to compare differences in toxicity between PFOA and its substitute, HFPO-DA, in a common species of earthworm, Eisenia fetida.

View Article and Find Full Text PDF

The short-chain (C to C) and ultrashort-chain (C to C) per- and polyfluoroalkyl substances (PFAS) are bioaccumulative, carcinogenic to humans, and harder to remove using current technologies, which are often detected in drinking and environmental water samples. Herein, we report the development of nonafluorobutanesulfonyl (NFBS) and polyethylene-imine (PEI)-conjugated FeO magnetic nanoparticle-based magnetic nanoadsorbents and demonstrated that the novel adsorbent has the capability for highly efficient removal of six different short- and ultrashort-chain PFAS from drinking and environmental water samples. Reported experimental data indicates that by capitalizing the cooperative hydrophobic, fluorophilic, and electrostatic interaction processes, NFBS-PEI-conjugated magnetic nanoadsorbents can remove ∼100% short-chain perfluorobutanesulfonic acid within 30 min from the water sample with a maximum absorption capacity of ∼234 mg g.

View Article and Find Full Text PDF

β-cyclodextrin imprinted film embedded with methylene blue: A host-guest sensitive electrochemical strategy for PFAS detection.

J Hazard Mater

December 2024

State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092,  China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Article Synopsis
  • PFAS pose significant detection challenges in water, prompting the development of a new sensor using a molecularly imprinted polymer with enhanced antifouling properties.
  • The sensor, constructed with β-cyclodextrin and methylene blue, allows for sensitive and selective detection of perfluorooctanoic acid (PFOA) in real water samples, achieving a detection limit as low as 1.57 pg/mL.
  • This innovative platform demonstrates a high selectivity for PFOA compared to other similar substances and could facilitate ongoing monitoring of PFAS in aquatic environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!