A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemical modification for improving catalytic performance of lipase B from Candida antarctica with hydrophobic proline ionic liquid. | LitMetric

Chemical modification for improving catalytic performance of lipase B from Candida antarctica with hydrophobic proline ionic liquid.

Bioprocess Biosyst Eng

State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.

Published: April 2022

In this study, a series of proline ionic liquids with different lengths of hydrophobic alkyl on the side chain were used to modify the Candida Antarctic lipase B (CALB). The catalytic activity, thermal stability and tolerance to methanol and DMSO of the modified enzyme were all improved simultaneously. The optimum temperature changed from 55 to 60 ℃. The hydrophobicity and anion type of the modifier have important influence on the catalytic performance of CALB. CALB modified by [ProC][HPO] has a better effect. Under the optimal conditions, its hydrolysis activity was 3.0 times than that of the native enzyme, the catalytic efficiency Kcat/Km improved 2.8 times in aqueous phase, and the tolerance to organic solvent with strong polarity (50% methanol 2 h) was increased by 6.8 times. Fluorescence spectra and circular dichroism (CD) spectroscopy showed that the introduction of ionic liquids changed the microenvironment near the fluorophores of the enzyme protein, the α-helix decreased and β-sheet increased in the secondary structure of the modified enzymes. The root mean square deviation (RMSD), residue root mean square fluctuation (RMSF), radius of gyration (Rg), and solution accessible surface area (SASA) of [ProC][Br]-CALB, [ProC][Br]-CALB and native CALB were obtained for comparison by molecular dynamics simulation. The results of dynamics simulation were in good agreement with enzymology experiment. The introduction of ionic liquids can keep CALB in a better active conformation, and proline ionic liquids with long hydrophobic chains can significantly improve the surface hydrophobicity and overall rigidity of CALB. This research offers a new idea for rapid screening of efficient modifiers and provision of enzymes with high stability and activity for industrial application.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-022-02696-xDOI Listing

Publication Analysis

Top Keywords

ionic liquids
16
proline ionic
12
catalytic performance
8
introduction ionic
8
root square
8
dynamics simulation
8
calb
6
ionic
5
chemical modification
4
modification improving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!