Dietary and symbiotic bacteria can exert powerful influence on metazoan lipid metabolism. Recent studies have emerged that microbiota have a role in animal obesity and related health disorders, but the mechanisms by which bacteria influence lipid storage in their host are unknown. To reduce the complexity of the relationship between gut microbiota and the host, () has been chosen as a model organism to study interspecies interaction. Here, we demonstrate that feeding with an opportunistic pathogenic bacterium () retards growth and promotes excessive neutral lipid storage. Gene expression analysis reveals that dietary induces a lipogenic transcriptional response that includes the SREBP ortholog SBP-1, and fatty acid desaturases FAT-6 and FAT-7. Live imaging and ultrastructural analysis suggest that excess neutral lipid is stored in greatly expanded lipid droplets (LDs), as a result of enhanced endoplasmic reticulum (ER)-LD interaction. We also report that loss of function mutations in in confers resistance to . Dietary induces supersized LDs by enhancing lipogenesis and ER-LD contacts in . This work delineates a new model for understanding microbial regulation of metazoan physiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816401 | PMC |
http://dx.doi.org/10.1080/19490976.2021.2013762 | DOI Listing |
Metab Brain Dis
January 2025
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.
Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFJ Anat
January 2025
Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany.
Obesity, along with hypoxia, is known to be a risk factor for pulmonary hypertension (PH), which can lead to right ventricular hypertrophy and eventually heart failure. Both obesity and PH influence the autonomic nervous system (ANS), potentially aggravating changes in the right ventricle (RV). This study investigates the combined effects of obesity and hypoxia on the autonomic innervation of the RV in a mouse model.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Evangelical College, N'Djamena, BP 1200, Chad.
The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
Purpose: To study the potential of a candidate probiotic strain belonging to the Enterococcus durans species in alleviating hypercholesterolemia and improving the microbial milieu of rat gut.
Methods: A previously isolated and characterized E. durans strain NPL 1334 was further screened in vitro for its bile salt hydrolyzation and cholesterol assimilation ability.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!