Draft Genome Sequence of an Aflatoxin-Producing Aspergillus flavus Strain Isolated from Food.

Microbiol Resour Announc

Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany.

Published: February 2022

Aspergillus flavus is the main producer of carcinogenic aflatoxins and thus is one of the most important fungal food contaminants. Here, we report that the genome of A. flavus strain MRI19 was sequenced using MiSeq and PacBio platforms and that a hybrid assembly was generated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812320PMC
http://dx.doi.org/10.1128/mra.00894-21DOI Listing

Publication Analysis

Top Keywords

aspergillus flavus
8
flavus strain
8
draft genome
4
genome sequence
4
sequence aflatoxin-producing
4
aflatoxin-producing aspergillus
4
strain isolated
4
isolated food
4
food aspergillus
4
flavus main
4

Similar Publications

Detection, quantification, and characterization of airborne Aspergillus flavus within the corn canopy.

Mycotoxin Res

January 2025

ARS, National Biological Control Laboratory, 59 Lee Road, Stoneville, MS, 38776, USA.

Aflatoxin contamination of corn can occur when developing kernels are infected by the plant pathogen Aspergillus flavus. One route of infection is from airborne conidia. We executed a series of experiments within the corn canopy during two growing seasons and in two states to document the abundance and dynamics of the airborne A.

View Article and Find Full Text PDF

Background: This study employed melanin synthesized by Aspergillus flavus and Aspergillus carbonarius to inhibit the production of mycotoxins and bioremediation of heavy metals (HMs).

Methods: First, twenty fungal isolates were obtained from soil samples, and were evaluated to produce melanin. The melanin of the most potent producers has undergone several confirmatory experiments, including, Dihydroxyphenylalanine (DOPA)-inhibitor-kojic acid pathway detection, High-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Chemical profile changes in Peanut seeds infected with aspergillus flavus via widely targeted metabolomics.

Food Chem

January 2025

Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China. Electronic address:

Peanut seeds are enriched with protein and fatty acids, making them susceptible to infection by Aspergillus flavus (A. flavus). The infected seeds are harmful to human health due to the aflatoxin contamination.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

The isolated Aspergillus flavus NSRN22 was used for green synthesis of silver and selenium nanoparticles (AgNPs and SeNPs). New food packaging films produced by combining each type of NPs with chitosan (CS) or sodium alginate (SA) were characterized. Transmission electron microscopy revealed that the average particle size was lower in case of AgNPs (9 to 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!