AI Article Synopsis

  • The study sequenced the complete genome of SARS-CoV-2 from 15 nasopharyngeal swabs collected in Addis Ababa, Ethiopia, between December 2020 and March 2021.
  • The analysis revealed that the B.1 lineage of the virus was the most common during that period.
  • Additionally, the emergence of the B.1.1.7 variant was noted as a cause for concern starting in June 2021.

Article Abstract

The coding-complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome sequences from 15 nasopharyngeal swabs collected in Addis Ababa, Ethiopia, during the period from December 2020 to March 2021 were determined using Illumina MiSeq technology. A sequence analysis identified that the B.1 SARS-CoV-2 lineage was most prevalent with the worrying emergence of B.1.1.7 in June 2021.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812317PMC
http://dx.doi.org/10.1128/mra.01182-21DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 genome
8
genome sequence
4
sequence ethiopia
4
ethiopia coding-complete
4
coding-complete severe
4
severe acute
4
acute respiratory
4
respiratory syndrome
4
syndrome coronavirus
4
coronavirus sars-cov-2
4

Similar Publications

Unveiling the ghost: machine learning's impact on the landscape of virology.

J Gen Virol

January 2025

Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.

The complexity and speed of evolution in viruses with RNA genomes makes predictive identification of variants with epidemic or pandemic potential challenging. In recent years, machine learning has become an increasingly capable technology for addressing this challenge, as advances in methods and computational power have dramatically improved the performance of models and led to their widespread adoption across industries and disciplines. Nascent applications of machine learning technology to virus research have now expanded, providing new tools for handling large-scale datasets and leading to a reshaping of existing workflows for phenotype prediction, phylogenetic analysis, drug discovery and more.

View Article and Find Full Text PDF

East Asia and the Pacific Surveillance Metrics and History of the COVID-19 Pandemic: Updated Epidemiological Assessment.

JMIR Public Health Surveill

January 2025

Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, 420 E. Superior, Chicago, US.

Background: This study updates the COVID-19 pandemic surveillance in East Asia and the Pacific we first conducted in 2020 with two additional years of data for the region.

Objective: First, we measure whether there was an expansion or contraction of the pandemic in East Asia and the Pacific region when the World Health Organization (WHO) declared the end of the COVID-19 public health emergency of international concern on May 5, 2023. Second, we use dynamic and genomic surveillance methods to describe the dynamic history of the pandemic in the region and situate the window of the WHO declaration within the broader history.

View Article and Find Full Text PDF

Therapeutic monoclonal antibodies (mAbs) against SARS-CoV-2 become obsolete as spike substitutions reduce antibody binding. To induce antibodies against conserved receptor-binding domain (RBD) regions for protection against SARS-CoV-2 variants of concern and zoonotic sarbecoviruses, we developed mosaic-8b RBD-nanoparticles presenting eight sarbecovirus RBDs arranged randomly on a 60-mer nanoparticle. Mosaic-8b immunizations protected animals from challenges from viruses whose RBDs were matched or mismatched to those on nanoparticles.

View Article and Find Full Text PDF

The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) and temporomandibular joint disorders (TMD) as the two major diseases are being focused by the public in modern societies. Previous epidemiological studies have shown increase in TMD prevalence during COVID-19 pandemic era. This study was aimed to verify the causal association between two sides using bidirectional mendelian randomization (MR) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!