A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session45d1gmebs9u461qurcj9hlc1nc24ii14): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Higher Damping Capacities in Gradient Nanograined Metals. | LitMetric

Higher Damping Capacities in Gradient Nanograined Metals.

Nano Lett

Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China.

Published: February 2022

The capability of damping mechanical energy in polycrystalline metals depends on the activities of defects such as dislocation and grain boundary (GB). However, operating defects has the opposite effect on strength and damping capacity. In the quest for high damping metals, maintaining the level of strength is desirable in practice. In this work, gradient nanograined structure is considered as a candidate for high-damping metals. The atomistic simulations show that the gradient nanograined models exhibit enhanced damping capacities compared with the homogeneous counterparts. The property can be attributed to the long-range order of GB orientations in gradient grains, where shear stresses facilitate GB sliding. Combined with the extraordinary mechanical properties, the gradient structure achieves a strength-ductility-damping synergy. The results provide promising solutions to the conflicts between mechanical properties and damping capacity in polycrystalline metals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c03600DOI Listing

Publication Analysis

Top Keywords

gradient nanograined
12
damping capacities
8
polycrystalline metals
8
damping capacity
8
mechanical properties
8
gradient
5
metals
5
damping
5
higher damping
4
capacities gradient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!