Mass spectrometry (MS) has emerged as an excellent tool for the characterization of metal-organic frameworks (MOFs) based on the characteristic metal ions and organic ligands. Mass measurement of intact MOF nanocrystals, however, remains a challenge for MS technology. Here, we reported the development of a probe particles based charge detection-quadrupole ion trap mass spectrometry (probe CD-QIT MS) method, where charge detection and mass measurement of a single MOF nanocrystal were achieved under the assistance of probe particles of micrometer size. As a validation of the method, the masses of a series of polystyrene (PS) size standards from 493 nm to 1.6 μm were measured with 3 μm PS particles as probes, and the measured masses were found to match well with their certified masses. Then, charge detections and mass analysis of single ZIF-8 and GOx@ZIF-8 with a size around 600 nm were achieved successfully. The method presented here demonstrates simplicity, high speed, and accuracy. Notably, it allows quantitative measurement of the amount of immobilized GOx enzyme by using the mass difference between ZIF-8 and GOx@ZIF-8. In addition, based on the determined mass, the size analysis of these MOF particles with irregular shape was carried out and demonstrated to be complementary to transmission electron microscopy (TEM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c03845 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!