One approach to control dengue virus transmission is the symbiont Wolbachia, which limits viral infection in mosquitoes. Despite plans for its widespread use in Aedes aegypti, Wolbachia's mode of action remains poorly understood. Many studies suggest that the mechanism is likely multifaceted, involving aspects of immunity, cellular stress and nutritional competition. A previous study from our group used artificial selection to identify a new mosquito candidate gene related to viral blocking; alpha-mannosidase-2a (alpha-Mann-2a) with a predicted role in protein glycosylation. Protein glycosylation pathways tend to be involved in complex host-viral interactions; however, the function of alpha-mannosidases has not been described in mosquito-virus interactions. We examined alpha-Mann-2a expression in response to virus and Wolbachia infections and whether reduced gene expression, caused by RNA interference, affected viral loads. We show that dengue virus (DENV) infection affects the expression of alpha-Mann-2a in a tissue- and time-dependent manner, whereas Wolbachia infection had no effect. In the midgut, DENV prevalence increased following knockdown of alpha-Mann-2a expression in Wolbachia-free mosquitoes, suggesting that alpha-Mann-2a interferes with infection. Expression knockdown had the same effect on the togavirus chikungunya virus, indicating that alpha-Mann-2a may have broad antivirus effects in the midgut. Interestingly, we were unable to knockdown the expression in Wolbachia-infected mosquitoes. We also provide evidence that alpha-Mann-2a may affect the transcriptional level of another gene predicted to be involved in viral blocking and cell adhesion; cadherin87a. These data support the hypothesis that glycosylation and adhesion pathways may broadly be involved in viral infection in Ae. aegypti.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081237PMC
http://dx.doi.org/10.1111/imb.12764DOI Listing

Publication Analysis

Top Keywords

viral infection
12
aedes aegypti
8
dengue virus
8
viral blocking
8
protein glycosylation
8
alpha-mann-2a expression
8
infection expression
8
involved viral
8
alpha-mann-2a
7
viral
6

Similar Publications

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity.

Vet Res

January 2025

Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.

View Article and Find Full Text PDF

Background: The long-term sequelae of coronavirus disease 2019 (COVID-19) and its recovery have becoming significant public health concerns. Therefore, this study aimed to enhance the limited evidence regarding the relationship between sleep quality on long COVID among the older population aged 60 years or old.

Methods: Our study included 4,781 COVID-19 patients enrolled from April to May 2023, based on the Peking University Health Cohort.

View Article and Find Full Text PDF

Transcriptome-wide dynamics of mA methylation in ISKNV and Siniperca chuatsi cells infected with ISKNV.

BMC Genomics

January 2025

State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.

View Article and Find Full Text PDF

Oncolytic viruses expressing MATEs facilitate target-independent T-cell activation in tumors.

EMBO Mol Med

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.

Oncolytic viruses (OV) expressing bispecific T-cell engagers (BiTEs) are promising tools for tumor immunotherapy but the range of target tumors is limited. To facilitate effective T-cell stimulation with broad-range applicability, we established membrane-associated T-cell engagers (MATEs) harboring the protein transduction domain of the HIV-Tat protein to achieve non-selective binding to target cells. In vitro, MATEs effectively activated murine T cells and improved killing of MC38 colon carcinoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!