Currently, there are no effective clinical or experimental treatments to fully restore the function of the torn acetabular labrum. To fill the gap, here, we report the finding of progenitor cells in labral tissue, which can be recruited and stimulated to repair torn acetabular labral tissue. This study aimed to develop a biomolecule releasing bioadhesive which can speed up labral tissue healing by eliciting autologous labral progenitor cellular responses. A click chemistry-based bioadhesive, capable of releasing biomolecules, was synthesized to exert ~3× adhesion strength compared with fibrin glue. Via the release of platelet-derived growth factor (PDGF), the adhesive was shown to actively recruit and stimulate the proliferation of labral progenitor cells to the tear sites and within the adhesive. Finally, the ability of this biomolecules-releasing adhesive designed to promote labral tissue regeneration was evaluated using discarded human acetabular labrum tissue compared with surgical suture ex vivo. Histological analysis shows that PDGF-releasing bioadhesive yielded significantly more labrum cell responses and extracellular matrix protein (proteoglycan and collagen) production at the tear tissue site than surgical suture controls. The results confirm that the new PDGF-releasing bioadhesive can activate the responses of autologous labral progenitor cells to significantly improve labral tissue regeneration. Clinical significance: These PDGF-releasing bioadhesives may serve as a new and effective tool for repairing and regenerating acetabular labrum tears.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.25290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!