Pharmaceutical compounds are a serious problem in the environment. They cause damage to the aquatic, animal, and human organisms and soon became considered emerging pollutants where their removal is extremely urgent. Among the techniques used, adsorption has been used with success, where several adsorbent materials, including those from residual biomass, have been used to remove these pollutants. In this study, the skins of the pitaya fruit (Hylocereus undatus) productive chain were carbonized with ZnCl to obtain activated carbon and later used in the adsorption of the drug naproxen (NPX) in a batch system. The Freundlich model demonstrated a better adjustment for the equilibrium isotherms. A high adsorption capacity for NPX (158.81 mg g) was obtained at 328 K, which can be attributed to the remarkable textural properties of the adsorbent, besides certain functional groups present on its surface. Thermodynamic studies confirmed the endothermic nature of the adsorption process (∆H = 0.2898 kJ mol). The linear driving force model (LDF) presented a good statistical adjustment to the experimental kinetic data. The application of the material in the treatment of simulated wastewater composed of various pharmaceutical drugs and salts was very promising, reaching 75.7% removal. Therefore, it can be inferred that the application of activated carbon derived from pitaya bark is highly promising in removing the NPX drug and treating synthetic mixtures containing other pharmaceutical substances.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-18981-xDOI Listing

Publication Analysis

Top Keywords

pitaya fruit
8
fruit hylocereus
8
hylocereus undatus
8
activated carbon
8
application biowaste
4
biowaste generated
4
generated production
4
production chain
4
chain pitaya
4
undatus efficient
4

Similar Publications

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

Aging is a worldwide socioeconomic burden. Cerebellar aging is an enigma contributing to many behavioral aging disorders, hence is its hindering by prophylactic measurements is a crucial geriatric research target. Red dragon fruit (RDF) is a tropical fruit with antioxidant, anti-inflammatory and anti-apoptotic properties.

View Article and Find Full Text PDF

Dragon fruit, which is native to northern South America and Mexico, has become a significant crop in tropical and subtropical regions worldwide, including Vietnam, China, and Australia. The fruit ( spp.) is rich in various bioactive phytochemical compounds, including phenolic acids, flavonoids, and pigments such as betalains and anthocyanins, which contribute to its antioxidant, anti-inflammatory, and anti-microbial properties.

View Article and Find Full Text PDF

The novel incorporation of dragon fruit peel extract (DE), rich in anthocyanins, Zn (from Zinc Alginate) and pectin was applied to create active and intelligent food packaging composite films. These films were characterized for their microstructure and properties. Various levels of anthocyanin extracts (1 %, 3 %, and 5 %) were evaluated for their impact on the films' physical and functional properties, incorporating microstructure, mechanical strength, barrier properties, pH sensitivity, and bacteriostatic effectiveness.

View Article and Find Full Text PDF

Objectives: In this study, the impacts of various processing parameters on the quality and consumer satisfaction of dragon fruit beverages were investigated in order to establish an informative framework for the manufacturing of commercial dragon fruit beverages, focusing on health benefits and safety for consumers, and sensory appeal of the products.

Methods: This study employed various analytical methods to quantify some important phytochemical compounds in dragon fruit juice such as total and reducing sugars, vitamin C, betacyanins, anthocyanins, polyphenol, and so forth. This study also employed the Box-Behnken response surface experimental design to optimize various processing parameters for quality and consumer satisfaction, which include enzymatic pectin hydrolysis parameters and formulation for dragon fruit energy drink.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!