Purpose: The aim of the study was to compare the parameters of blood flow in glioblastomas and primary central nervous system lymphomas (PCNSLs), measured by pseudo-continuous arterial spin labeling MRI (3D PCASL), and to determine the informativeness of this method in the differential diagnosis between these lesions.

Methods: The study included MRI data of 139 patients with PCNSL (n = 21) and glioblastomas (n = 118), performed in the Burdenko Neurosurgical Center. No patients received chemotherapy, hormone therapy, or radiation therapy prior to MRI. On the 3D PCASL perfusion map, the absolute and normalized values of tumor blood flow were calculated in the glioblastoma and PCNSL groups (maxTBFmean and nTBF).

Results: MaxTBFmean and nTBF in the glioblastoma group were significantly higher than those in the PCNSL group: 168.9 ml/100 g/min versus 65.6 and 9.3 versus 3.7, respectively (p < 0.001). Arterial spin labeling perfusion had high sensitivity (86% for maxTBFmean, 95% for nTBF) and specificity (77% for maxTBFmean, 73% for nTBF) in the differential diagnosis between PCNSL and glioblastomas. Blood flow thresholds were 98.9 ml/100 g/min using absolute blood flow values and 6.1 using normalized values, AUC > 0.88.

Conclusion: The inclusion of 3D PCASL in the standard MRI protocol can increase the specificity of the differential diagnosis between glioblastomas and PCNSL.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00234-021-02888-4DOI Listing

Publication Analysis

Top Keywords

differential diagnosis
12
pseudo-continuous arterial
8
arterial spin
8
diagnosis glioblastomas
8
glioblastomas primary
8
primary central
8
central nervous
8
nervous system
8
system lymphomas
8
blood flow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!