AI Article Synopsis

  • Silicon (Si) fertiliser can enhance rice plants' tolerance to salinity, but its effectiveness varies among different rice cultivars.
  • The study found that some rice cultivars benefited from Si, showing improved growth under salt stress, while others were either unaffected or harmed.
  • Root Si content is crucial for alleviating stress, with optimal levels identified at 0.5-0.9%, and Si fertilisation is more cost-effective in high-yield, mild stress conditions than in low-yield systems.

Article Abstract

Silicon (Si) fertiliser can improve rice (Oryza sativa) tolerance to salinity. The rate of Si uptake and its associated benefits are known to differ between plant genotypes, but, to date, little research has been done on how the benefits, and hence the economic feasibility, of Si fertilisation varies between cultivars. In this study, a range of rice cultivars was grown both hydroponically and in soil, at different levels of Si and NaCl, to determine cultivar variation in the response to Si. There was significant variation in the effect of Si, such that Si alleviated salt-induced growth inhibition in some cultivars, while others were unaffected, or even negatively impacted. Thus, when assessing the benefits of Si supplementation in alleviating salt stress, it is essential to collect cultivar-specific data, including yield, since changes in biomass were not always correlated with those seen for yield. Root Si content was found to be more important than shoot Si in protecting rice against salinity stress, with a root Si level of 0.5-0.9% determined as having maximum stress alleviation by Si. A cost-benefit analysis indicated that Si fertilisation is beneficial in mild stress, high-yield conditions but is not cost-effective in low-yield production systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810965PMC
http://dx.doi.org/10.1186/s12284-022-00555-7DOI Listing

Publication Analysis

Top Keywords

salinity stress
8
stress
5
ability silicon
4
silicon fertilisation
4
fertilisation alleviate
4
alleviate salinity
4
rice
4
stress rice
4
rice critically
4
critically dependent
4

Similar Publications

<b>Background and Objective:</b> The biodiversity of rice cultivars, including local rice from North Sulawesi, represents a potential source of germplasm for fulfilling national food needs. A few publications related to the characteristics of salinity stress resistance in rice cultivars, including local rice from North Sulawesi. This study aimed to examine the morphological response to salinity stress at the germination phase in eight rice cultivars cultivated in North Sulawesi, Indonesia.

View Article and Find Full Text PDF

Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency.

Front Plant Sci

January 2025

National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.

Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.

View Article and Find Full Text PDF

Nanoparticles enhance agricultural applications with their bioactivity, bioavailability, and reactivity. Selenium mitigates the adverse effects of salinity on plant growth, boosting antioxidant defense, metabolism, and resilience to abiotic stress. Our study applied selenium nanoparticles to mitigate salinity-induced damage and support plant growth.

View Article and Find Full Text PDF

Effects of 60 Hz non-uniform electromagnetic fields (EMFs) on the tomato (cv. L-05) seed germination, photosynthesis, and seedling growth under salt stress and laboratory conditions were investigated. A previous trial investigated the impact of salt stress levels (0, 40, 60, 80, and 100 mM NaCl) on tomato seeds, and the 100 mM NaCl level was selected to study the effects of EMFs in attenuating salinity stress on germination, physiology, and growth of tomato seedlings.

View Article and Find Full Text PDF

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!