MSE-type zeolites synthesized by different organic structure-directing agents (OSDAs), UZM-35 and MCM-68, were prepared. The location of Brønsted acid sites derived from the framework Al atoms and acidic properties were investigated based on Al MQMAS NMR and IR techniques combined with the evaluation of the catalytic activity. We have successfully found a significant difference in the location of Brønsted acid sites in the MSE-type framework; 61 and 33% of acid sites were located at the 12-ring channel for MCM-68 and UZM-35, respectively. The differences in the location of the acid sites yielded their unique catalytic activities for the hydrocarbon cracking reactions, indicating that a well-chosen type of OSDAs for the synthesis is one of the possibilities for controlling the distribution of the framework Al atoms in the MSE-type framework.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp00215aDOI Listing

Publication Analysis

Top Keywords

acid sites
16
mse-type zeolites
8
catalytic activity
8
uzm-35 mcm-68
8
location brønsted
8
brønsted acid
8
framework atoms
8
mse-type framework
8
clarification acid
4
acid site
4

Similar Publications

Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.

View Article and Find Full Text PDF

Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).

View Article and Find Full Text PDF

The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.

View Article and Find Full Text PDF

Ocean surface temperatures and the frequency and intensity of marine heatwaves are increasing worldwide. Understanding how marine organisms respond and adapt to heat pulses and the rapidly changing climate is crucial for predicting responses of valued species and ecosystems to global warming. Here, we carried out an in situ experiment to investigate sublethal responses to heat spikes of a functionally important intertidal bivalve, the venerid clam Austrovenus stutchburyi.

View Article and Find Full Text PDF

Lithocarpus litseifolius is rich in the chalcones phloridzin and trilobatin, the biosynthesis pathways of which have not been fully demonstrated. Chalcone synthase(CHS) is the first key rate-limiting enzyme in the biosynthesis of flavonoids in plants. To explore the functions of CHS gene family in chalcone synthesis of L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!