Detecting protein markers in extracellular vesicles (EVs) is becoming a useful tool for basic research and clinical diagnoses. Most EV protein assays, however, require lengthy processes-conjugating affinity ligands onto sensing substrates and affixing EVs with additional labels to maximize signal generation. Here, we present an iPEX (impedance profiling of extracellular vesicles) system, an all-electrical strategy toward fast, multiplexed EV profiling. iPEX adopts one-step electropolymerization to rapidly functionalize sensor electrodes with antibodies; it then detects EV proteins in a label-free manner through impedance spectroscopy. The approach streamlines the entire EV assay, from sensor preparation to signal measurements. We achieved (i) fast immobilization of antibodies (<3 min) per electrode; (ii) high sensitivity (500 EVs/mL) without secondary labeling; and (iii) parallel detection (quadruple) in a single chip. A potential clinical utility was demonstrated by directly analyzing plasma samples from glioblastoma multiforme patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802188PMC
http://dx.doi.org/10.1021/acscentsci.1c01193DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
12
profiling extracellular
8
multielectrode spectroscopy
4
spectroscopy enables
4
enables rapid
4
rapid sensitive
4
sensitive molecular
4
molecular profiling
4
vesicles detecting
4
detecting protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!