Background: Although surgical pathology or biopsy are considered the gold standard for glioma grading, these procedures have limitations. This study set out to evaluate and validate the predictive performance of a deep learning radiomics model based on contrast-enhanced T1-weighted multiplanar reconstruction images for grading gliomas.

Methods: Patients from three institutions who diagnosed with gliomas by surgical specimen and multiplanar reconstructed (MPR) images were enrolled in this study. The training cohort included 101 patients from institution 1, including 43 high-grade glioma (HGG) patients and 58 low-grade glioma (LGG) patients, while the test cohorts consisted of 50 patients from institutions 2 and 3 (25 HGG patients, 25 LGG patients). We then extracted radiomics features and deep learning features using six pretrained models from the MPR images. The Spearman correlation test and the recursive elimination feature selection method were used to reduce the redundancy and select most predictive features. Subsequently, three classifiers were used to construct classification models. The performance of the grading models was evaluated using the area under the receiver operating curve, sensitivity, specificity, accuracy, precision, and negative predictive value. Finally, the prediction performances of the test cohort were compared to determine the optimal classification model.

Results: For the training cohort, 62% (13 out of 21) of the classification models constructed with MPR images from multiple planes outperformed those constructed with single-plane MPR images, and 61% (11 out of 18) of classification models constructed with both radiomics features and deep learning features had higher area under the curve (AUC) values than those constructed with only radiomics or deep learning features. The optimal model was a random forest model that combined radiomic features and VGG16 deep learning features derived from MPR images, which achieved AUC of 0.847 in the training cohort and 0.898 in the test cohort. In the test cohort, the sensitivity, specificity, and accuracy of the optimal model were 0.840, 0.760, and 0.800, respectively.

Conclusions: Multiplanar CE-T1W MPR imaging features are more effective than features from single planes when differentiating HGG and LGG. The combination of deep learning features and radiomics features can effectively grade glioma and assist clinical decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739133PMC
http://dx.doi.org/10.21037/qims-21-722DOI Listing

Publication Analysis

Top Keywords

deep learning
28
mpr images
20
learning features
20
training cohort
12
features
12
radiomics features
12
classification models
12
test cohort
12
glioma grading
8
multiplanar reconstructed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!