AI Article Synopsis

Article Abstract

Background: The purpose of this scoping review was to explore the current applications of objective gait analysis using inertial measurement units, custom algorithms and artificial intelligence algorithms in detecting neurological and musculoskeletal gait altering pathologies from healthy gait patterns.

Methods: Literature searches were conducted of four electronic databases (Medline, PubMed, Embase and Web of Science) to identify studies that assessed the accuracy of these custom gait analysis models with inputs derived from wearable devices. Data was collected according to the preferred reporting items for systematic reviews and meta-analysis statement guidelines.

Results: A total of 23 eligible studies were identified for inclusion in the present review, including 10 custom algorithms articles and 13 artificial intelligence algorithms articles. Nine studies evaluated patients with Parkinson's disease of varying severity and subtypes. Support vector machine was the commonest adopted artificial intelligence algorithm model, followed by random forest and neural networks. Overall classification accuracy was promising for articles that use artificial intelligence algorithms, with nine articles achieving more than 90% accuracy.

Conclusions: Current applications of artificial intelligence algorithms are reasonably effective discrimination between pathological and non-pathological gait. Of these, machine learning algorithms demonstrate the additional capacity to handle complicated data input, when compared to other custom algorithms. Notably, there has been increasing application of machine learning algorithms for conducting gait analysis. More studies are needed with unsupervised methods and in non-clinical settings to better reflect the community and home-based usage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801637PMC
http://dx.doi.org/10.1177/20552076221074128DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
24
custom algorithms
16
gait analysis
16
intelligence algorithms
16
algorithms articles
12
algorithms
10
wearable devices
8
scoping review
8
current applications
8
articles artificial
8

Similar Publications

Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.

Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Background: Artificial Intelligence (AI) is increasingly applied in healthcare to boost productivity, reduce administrative workloads, and improve patient outcomes. In nursing, AI offers both opportunities and challenges. This study explores nurses' perspectives on implementing AI in nursing practice within the context of Jordan, focusing on the perceived benefits and concerns related to its integration.

View Article and Find Full Text PDF

Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!