A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA Methylation Biomarkers-Based Human Age Prediction Using Machine Learning. | LitMetric

DNA Methylation Biomarkers-Based Human Age Prediction Using Machine Learning.

Comput Intell Neurosci

Department of Information Technology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India.

Published: February 2022

Purpose: Age can be an important clue in uncovering the identity of persons that left biological evidence at crime scenes. With the availability of DNA methylation data, several age prediction models are developed by using statistical and machine learning methods. From epigenetic studies, it has been demonstrated that there is a close association between aging and DNA methylation. Most of the existing studies focused on healthy samples, whereas diseases may have a significant impact on human age. Therefore, in this article, an age prediction model is proposed using DNA methylation biomarkers for healthy and diseased samples.

Methods: The dataset contains 454 healthy samples and 400 diseased samples from publicly available sources with age (1-89 years old). Six CpG sites are identified from this data having a high correlation with age using Pearson's correlation coefficient. In this work, the age prediction model is developed using four different machine learning techniques, namely, Multiple Linear Regression, Support Vector Regression, Gradient Boosting Regression, and Random Forest Regression. Separate models are designed for healthy and diseased data. The data are split randomly into 80 : 20 ratios for training and testing, respectively.

Results: Among all the techniques, the model designed using Random Forest Regression shows the best performance, and Gradient Boosting Regression is the second best model. In the case of healthy samples, the model achieved a MAD of 2.51 years for training data and 4.85 for testing data. Also, for diseased samples, a MAD of 3.83 years is obtained for training and 9.53 years for testing.

Conclusion: These results showed that the proposed model can predict age for healthy and diseased samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803417PMC
http://dx.doi.org/10.1155/2022/8393498DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
age prediction
16
machine learning
12
healthy samples
12
healthy diseased
12
diseased samples
12
age
9
human age
8
prediction model
8
gradient boosting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!