A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measuring Arterial Pulsatility With Dynamic Inflow Magnitude Contrast. | LitMetric

Measuring Arterial Pulsatility With Dynamic Inflow Magnitude Contrast.

Front Neurosci

Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom.

Published: January 2022

The pulsatility of blood flow through cerebral arteries is clinically important, as it is intrinsically associated with cerebrovascular health. In this study we outline a new MRI approach to measuring the real-time pulsatile flow in cerebral arteries, which is based on the inflow phenomenon associated with fast gradient-recalled-echo acquisitions. Unlike traditional phase-contrast techniques, this new method, which we dub dynamic inflow magnitude contrast (DIMAC), does not require velocity-encoding gradients as sensitivity to flow velocity is derived purely from the inflow effect. We achieved this using a highly accelerated single slice EPI acquisition with a very short TR (15 ms) and a 90° flip angle, thus maximizing inflow contrast. We simulate the spoiled GRE signal in the presence of large arteries and perform a sensitivity analysis. The sensitivity analysis demonstrates that in the regime of high inflow contrast, DIMAC shows much greater sensitivity to flow velocity over blood volume changes. We support this theoretical prediction with data collected in two separate experiments designed to demonstrate the utility of the DIMAC signal contrast. We perform a hypercapnia challenge experiment in order to experimentally modulate arterial tone within subjects, and thus modulate the arterial pulsatile flow waveform. We also perform a thigh-cuff release challenge, designed to induce a transient drop in blood pressure, and demonstrate that the continuous DIMAC signal captures the complex transient change in the pulsatile and non-pulsatile components of flow. In summary, this study proposes a new role for a well-established source of MR image contrast and demonstrates its potential for measuring both steady-state and dynamic changes in arterial tone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802674PMC
http://dx.doi.org/10.3389/fnins.2021.795749DOI Listing

Publication Analysis

Top Keywords

dynamic inflow
8
inflow magnitude
8
magnitude contrast
8
flow cerebral
8
cerebral arteries
8
pulsatile flow
8
contrast dimac
8
sensitivity flow
8
flow velocity
8
inflow contrast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!