Human intestinal morphogenesis establishes 3D epithelial microarchitecture and spatially organized crypt-villus characteristics. This unique structure is necessary to maintain intestinal homeostasis by protecting the stem cell niche in the basal crypt from exogenous microbial antigens and their metabolites. Also, intestinal villi and secretory mucus present functionally differentiated epithelial cells with a protective barrier at the intestinal mucosal surface. Thus, re-creating the 3D epithelial structure is critical to building in vitro intestine models. Notably, an organomimetic gut-on-a-chip can induce spontaneous 3D morphogenesis of an intestinal epithelium with enhanced physiological function and biomechanics. Here we provide a reproducible protocol to robustly induce intestinal morphogenesis in a microfluidic gut-on-a-chip as well as in a Transwell-embedded hybrid chip. We describe detailed methods for device fabrication, culture of Caco-2 or intestinal organoid epithelial cells in conventional setups as well as on microfluidic platforms, induction of 3D morphogenesis and characterization of established 3D epithelium using multiple imaging modalities. This protocol enables the regeneration of functional intestinal microarchitecture by controlling basolateral fluid flow within 5 d. Our in vitro morphogenesis method employs physiologically relevant shear stress and mechanical motions, and does not require complex cellular engineering or manipulation, which may be advantageous over other existing techniques. We envision that our proposed protocol may have a broad impact on biomedical research communities, providing a method to regenerate in vitro 3D intestinal epithelial layers for biomedical, clinical and pharmaceutical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675318 | PMC |
http://dx.doi.org/10.1038/s41596-021-00674-3 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200438, China.
Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named (), harboring a mutation in the - () gene. Loss of leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Radiation Physics, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
Accurate and efficient automatic segmentation is essential for various clinical tasks such as radiotherapy treatment planning. However, atlas-based segmentation still faces challenges due to the lack of representative atlas dataset and the computational limitations of deformation algorithms. In this work, we have proposed an atlas selection procedure (subset atlas grouping approach, MAS-SAGA) which utilized both image similarity and volume features for selecting the best-fitting atlases for contour propagation.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, Faculty of Graduate Studies, York University, Toronto, Ontario, Canada.
Relationships between parasites, host physiology, and behaviours are complex. Parasites can influence host hormonal microenvironment and behaviour through "sickness behaviours" that generally conserve energy. Using a parasite removal experiment, we examined the effects of gastrointestinal parasites on fecal glucocorticoid metabolites (fGC) and behaviours of vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China.
Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!