The study is aimed at elucidating the effect of selenium nanoparticles (SeNPs) on the death of cells in the primary culture of mouse cerebral cortex during oxygen and glucose deprivation (OGD). A primary cell culture of the cerebral cortex containing neurons and astrocytes was subjected to OGD and reoxygenation to simulate cerebral ischemia-like conditions in vitro. To evaluate the neuroprotective effect of SeNPs, cortical astrocytes and neurons were incubated for 24 h with SeNPs, and then subjected to 2-h OGD, followed by 24-h reoxygenation. Vitality tests, fluorescence microscopy, and real-time PCR have shown that incubation of primary cultured neurons and astrocytes with SeNPs at concentrations of 2.5-10 µg/ml under physiological conditions has its own characteristics depending on the type of cells (astrocytes or neurons) and leads to a dose-dependent increase in apoptosis. At low concentration SeNPs (0.5 µg/ml), on the contrary, almost completely suppressed the processes of basic necrosis and apoptosis. Both high (5 µg/ml) and low (0.5 µg/ml) concentrations of SeNPs, added for 24 h to the cells of cerebral cortex, led to an increase in the expression level of genes Bcl-2, Bcl-xL, Socs3, while the expression of Bax was suppressed. Incubation of the cells with 0.5 µg/ml SeNPs led to a decrease in the expression of SelK and SelT. On the contrary, 5 µg/ml SeNPs caused an increase in the expression of SelK, SelN, SelT, SelP. In the ischemic model, after OGD/R, there was a significant death of brain cells by the type of necrosis and apoptosis. OGD/R also led to an increase in mRNA expression of the Bax, SelK, SelN, and SelT genes and suppression of the Bcl-2, Bcl-xL, Socs3, SelP genes. Pre-incubation of cell cultures with 0.5 and 2.5 µg/ml SeNPs led to almost complete inhibition of OGD/R-induced necrosis and greatly reduced apoptosis. Simultaneously with these processes we observed suppression of caspase-3 activation. We hypothesize that the mechanisms of the protective action of SeNPs involve the activation of signaling cascades recruiting nuclear factors Nrf2 and SOCS3/STAT3, as well as the activation of adaptive pathways of ESR signaling of stress arising during OGD and involving selenoproteins SelK and SelT, proteins of the Bcl-2 family ultimately leading to inactivation of caspase-3 and inhibition of apoptosis. Thus, our results demonstrate that SeNPs can act as neuroprotective agents in the treatment of ischemic brain injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810781PMC
http://dx.doi.org/10.1038/s41598-022-05674-1DOI Listing

Publication Analysis

Top Keywords

neurons astrocytes
12
cerebral cortex
12
senps
11
selenium nanoparticles
8
astrocytes neurons
8
necrosis apoptosis
8
led increase
8
increase expression
8
bcl-2 bcl-xl
8
bcl-xl socs3
8

Similar Publications

Chikungunya virus (CHIKV) is an emerging, mosquito-borne arthritic alphavirus increasingly associated with severe neurological sequelae and long-term morbidity. However, there is limited understanding of the crucial host components involved in CHIKV replicase assembly complex formation, and thus virus replication and virulence-determining factors, within the central nervous system (CNS). Furthermore, the majority of CHIKV CNS studies focus on neuronal infection, even though astrocytes represent the main cerebral target.

View Article and Find Full Text PDF

The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms.

View Article and Find Full Text PDF

Lithium, Inflammation and Neuroinflammation with Emphasis on Bipolar Disorder-A Narrative Review.

Int J Mol Sci

December 2024

Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Zlotowski Center for Neuroscience and Zelman Center-The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.

This narrative review examines lithium's effects on immune function, inflammation and cell survival, particularly in bipolar disorder (BD) in in vitro studies, animal models and clinical studies. In vitro studies show that high lithium concentrations (5 mM, beyond the therapeutic window) reduce interleukin (IL)-1β production in monocytes and enhance T-lymphocyte resistance, suggesting a protective role against cell death. Lithium modulates oxidative stress in lipopolysaccharide (LPS)-activated macrophages by inhibiting nuclear factor (NF)-ƙB activity and reducing nitric oxide production.

View Article and Find Full Text PDF

Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications.

Life (Basel)

November 2024

Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.

Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.

View Article and Find Full Text PDF

Down syndrome (DS) is characterized by severe neurodevelopmental alterations that ultimately lead to the typical hallmark of DS: intellectual disability. In the DS brain, since the prenatal life stages, the number of astrocytes is disproportional compared to the healthy brain. This increase is due to a shift from neuron to astrocyte differentiation during brain development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!