Fiber-reinforced ceramic-matrix composites are advanced, temperature resistant materials with applications in aerospace engineering. Their analysis involves the detection and separation of fibers, embedded in a fiber bed, from an imaged sample. Currently, this is mostly done using semi-supervised techniques. Here, we present an open, automated computational pipeline to detect fibers from a tomographically reconstructed X-ray volume. We apply our pipeline to a non-trivial dataset by Larson et al. To separate the fibers in these samples, we tested four different architectures of convolutional neural networks. When comparing our neural network approach to a semi-supervised one, we obtained Dice and Matthews coefficients reaching up to 98%, showing that these automated approaches can match human-supervised methods, in some cases separating fibers that human-curated algorithms could not find. The software written for this project is open source, released under a permissive license, and can be freely adapted and re-used in other domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810976 | PMC |
http://dx.doi.org/10.1038/s41597-022-01119-6 | DOI Listing |
Anim Front
December 2024
Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA.
Front Pharmacol
December 2024
Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Background: Deutetrabenazine is a widely used drug for the treatment of tardive dyskinesia (TD), and post-marketing testing is important. There is a lack of real-world, large-sample safety studies of deutetrabenazine. In this study, a pharmacovigilance analysis of deutetrabenazine was performed based on the FDA Adverse Event Reporting System (FAERS) database to evaluate its relevant safety signals for clinical reference.
View Article and Find Full Text PDFFront Genet
December 2024
School of information engineering, Jingdezhen Ceramic University, Jingdezhen, China.
The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.
View Article and Find Full Text PDFCurrent neural network models of primate vision focus on replicating overall levels of behavioral accuracy, often neglecting perceptual decisions' rich, dynamic nature. Here, we introduce a novel computational framework to model the dynamics of human behavioral choices by learning to align the temporal dynamics of a recurrent neural network (RNN) to human reaction times (RTs). We describe an approximation that allows us to constrain the number of time steps an RNN takes to solve a task with human RTs.
View Article and Find Full Text PDFGiant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!