This study aimed to prepare and evaluate ground red pepper and turmeric added virgin olive oil (VOO) oleogels with whale spermaceti wax (WSW) as organogelator. The concentration of WSW was 8 wt%, and each spice was added at 1 overall wt%. Prepared oleogels were analyzed for main physico-chemical, structural, thermal, rheological properties. Further, aromatics volatile compositions, sensory descriptive analysis and consumer tests were completed. Results indicated that the new oleogels were quite spreadable preparates with acceptable quality indices. The oleogels included β type polymorphs, and showed up to 38℃ of peak melting temperatures. Rheological measurements proved true gel structure stable within applicable frequencies and above 38°C surrounding temperatures. The oleogels were thermo-reversible, and their gel state was recoverable after high shear. Around 25 different aromatic volatile compounds were identified in the two oleogels, most shown to be originating from the VOO, and the spices added. The panel defined and scored the samples with 12 sensory descriptive (hardness, spreadability, liquefaction, sandiness, olive fruit, grassy, waxy, rancid, bitter, hay, cooling and mouth coating) terms. Sensory scores were mostly similar to each other and also within the ranges given in the literature for similar spreadable fat products. Consumer test identified the samples with liked scores (above 4 in 5-max point scale) for appearance, aroma, flavour and overall acceptability. In conclusion, ground spices enriched VOO oleogels with WSW were developed successively to offer consumers spreadable olive oil products to extent consumption patterns with special flavors and health benefits of the spices.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.ess21167DOI Listing

Publication Analysis

Top Keywords

olive oil
12
red pepper
8
virgin olive
8
oleogels
8
whale spermaceti
8
spermaceti wax
8
voo oleogels
8
sensory descriptive
8
pepper turmeric-flavored
4
turmeric-flavored virgin
4

Similar Publications

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.

Results: In this study, we first reconstructed the entire mitochondrial genome of C.

View Article and Find Full Text PDF

Olive mill wastewater (OMWW), a byproduct of olive oil extraction, constitutes a natural resource of phenolic compounds. Hydroxytyrosol (HT), the predominant compound, exhibits antioxidant, anti-inflammatory, and neuroprotective effects. This research aims to evaluate the effect of OMWW bioproduct rich in HT on retinal glial function, glutamate metabolism and synaptic transmission alterations mediated by hyperglycemia and dyslipidemia in high-calorie diet (HCD) induced diabetic retinopathy (DR) in Psammomys obesus.

View Article and Find Full Text PDF

Chemical characterization and classification of vegetable oils using DESI-MS coupled with a neural network.

Food Chem

December 2024

Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

This study tackled mislabeling fraud in vegetable oils, driven by price disparities and profit motives, by developing an approach combining desorption electrospray ionization mass spectrometry (DESI-MS) with a shallow convolutional neural network (SCNN). The method was designed to characterize lipids and distinguish between nine vegetable oils: corn, soybean, peanut, sesame, rice bran, sunflower, camellia, olive, and walnut oils. The optimized DESI-MS method enhanced the ionization of non-polar glycerides and detected ion adducts like [TG + Na], [TG + NH].

View Article and Find Full Text PDF

Background: To compare the impact of two different lipid emulsions, specifically a soybean oil-based emulsion and a multiple oil emulsion (soybean oil, medium-chain triglycerides, olive oil, and fish oil, SMOF), on serum metabolites of very low birth weight (VLBW) infants using untargeted metabolomics analysis.

Methods: A comparative study was conducted on 25 VLBW infants hospitalized in neonatal intensive care units (NICU) of Hangzhou Women's Hospital in 2023. The infants were divided into the SMOF group (13 cases) and the soybean oil group (12 cases) based on the type of lipid emulsion used during parenteral nutrition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!