Although hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste which is a huge challenge. In this work, the laser-based modification technique of the titania nanotubes containing sputtered transition metal species (Fe, Co, Ni, and Cu) was employed. The characteristics of the electrodes are provided both for the hydrogen and oxygen evolution reactions, where the influence of the laser treatment has been found to have the opposite effect. The structural and chemical analysis of the substrate material provides insight into pathways towards more efficient, low-temperature water splitting. Laser-assisted integration of transition metal with the tubular nanostructure results in the match-like structure where the metal species are accumulated at the head. The electrochemical data indicates a significant decrease in material resistance that leads to an overpotential of only +0.69 V at 10 mA cmfor nickel-modified material.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac512aDOI Listing

Publication Analysis

Top Keywords

transition metal
12
water splitting
8
hydrogen oxygen
8
metal species
8
nanostructure laser-modified
4
laser-modified transition
4
metal
4
metal nanocomposites
4
nanocomposites water
4
splitting hydrogen
4

Similar Publications

Exploring P-(Fe,V)-Codoped Metastable-Phase β-NiMoO for Improving the Performance of Overall Water Splitting.

Inorg Chem

January 2025

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.

It is especially essential to develop high-performance and low-cost nonprecious metal catalysts for large-scale hydrogen production. A large number of electrochemical catalysts composited by transition metal centers has been reported; however, it is still a great challenge to design and manipulate target electrocatalysts to realize high overall water-splitting activity at the atomic level. Herein, we develop totally new P-(Fe,V)-codoped metastable-phase β-NiMoO.

View Article and Find Full Text PDF

The impact of anions on electrooxidation of perfluoroalkyl acids by porous Magnéli phase titanium suboxide anodes.

PLoS One

January 2025

Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.

Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.

View Article and Find Full Text PDF

The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.

View Article and Find Full Text PDF

Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts.

View Article and Find Full Text PDF

Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!