Gut microbiome homeostasis is critical in preventing diseases. However, the effect of disease on gut microbiota assembly remains unclear. At present, there are no reports on the composition and functional analysis of intestinal microbiota of Indian major carp, rohu (L. rohita) infected with ectoparasite, Argulus. In this study, we analysed and compared the intestinal microbiota of healthy and Argulus-infected rohu by 16S rRNA amplicon sequencing. Argulus infection could significantly influence the diversity and richness of the gut microbiota. However, abundance of Actinobacteria and Patescibacteria were enriched significantly in Argulus-infected fish. Venn diagram revealed that there were many more unique genera in the infected group as compared to control fish. The genera, Stenotrophomonas and Pirellula were significantly increased in infected fish while the abundance of Reyranella was decreased. LEfSe analysis showed a significant enrichment in abundances of 11 taxa in healthy group and 17 taxa in infected group. Furthermore, genera Rubellimicrobium, Dielma, Hyphomicrobium, Reyranella, Streptomyces and Cloacibacterium performed the best in differentiating between both the groups. Predicted microbiota function by PICRUSt revealed that the gut microbiota of infected fish was mainly associated with enriched synthesis of chitinases, chitin binding proteins, osmoprotectant proteins and sulfatases enzymes. There was a positive association between the structural and functional composition of the gut microbiota. The results indicated that the Argulus infection could affect the intestinal microbiota composition and function of rohu.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2022.105420DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
intestinal microbiota
12
microbiota
9
microbiota composition
8
composition function
8
indian major
8
major carp
8
carp rohu
8
rohita infected
8
argulus infection
8

Similar Publications

[Not Available].

Postepy Biochem

December 2024

Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw.

Mikrobiota układu pokarmowego jest nieodzownym elementem właściwego funkcjonowania organizmu człowieka, bowiem drobnoustroje jelitowe i ich metabolity silnie wpływają na metabolizm gospodarza i funkcje odpornościowe, jak również przyczyniają się do biosyntezy witamin, produkcji hormonów jelitowych, utrzymania integralności bariery jelitowej i ochrony przed patogenami, a także trawienia i wchłaniania składników odżywczych. Coraz częściej podkreśla się istnienie zależności pomiędzy zaburzeniami składu mikrobioty jelit a pojawianiem się chorób metabolicznych, tj. otyłości czy cukrzycy typu 2.

View Article and Find Full Text PDF

Causal association between gut microbiome and polycystic ovary syndrome: A bidirectional Mendelian randomization study.

Afr J Reprod Health

December 2024

Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.

Through implementing a bidirectional Mendelian randomization (MR) study, the causal effects between gut microbiome and polycystic ovary syndrome (PCOS) were analyzed. Summary statistics for PCOS were acquired from the FinnGen consortium R8 release data, which included 27,943 cases and 162,936 controls. The inverse-variance weighting (IVW) method was adopted for analysis.

View Article and Find Full Text PDF

This study sought to compare bacterial abundance and diversity in milk and feces of healthy lactating women with patients suffering from lactation mastitis, explore the pathogenesis of lactation mastitis, and develop new ideas for its treatment and prevention from a microbiological perspective. A total of 19 lactating mastitis patients and 19 healthy lactating women were recruited. Milk and fecal Specimens were obtained from both groups, and microbial community structure was analyzed using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

is a common opportunistic pathogen that causes gastrointestinal diseases in livestock and poultry. Our preliminary research has demonstrated that administering oral yeast-cell microcapsule (YCM)-mediated DNA vaccines can effectively stimulate mucosal immunity, thereby preventing the occurrence of gastrointestinal diseases. In this study, the α-toxin gene was first cloned and the H126G and C-terminal (C247-370) mutations were created.

View Article and Find Full Text PDF

: Cannabidiol (CBD) is an approved treatment for childhood epilepsies and a candidate treatment for several other CNS disorders. However, it has poor oral bioavailability. We investigated the effect of a novel lipid formulation on its absorption in humans and on its tissue distribution in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!