Investigations of microbial biogeography in extreme environments provide unique opportunities to disentangle the roles of environment and space in microbial community assembly. Here, we reported a comprehensive microbial biogeographic survey of 90 acid mine drainage (AMD) sediment samples from 18 mining sites of various mineral types across southern China. We found that environmental selection was strong in determining the AMD habitat species pool. However, microbial alpha diversity was primarily explained by mining sites rather than environmental factors, and microbial beta diversity correlated more strongly with geographic than environmental distance at both large and small spatial scales. Particularly, the presence/absence of widespread AMD habitat generalists was only correlated with geographic distance and independent of environmental variation. These distance-decay patterns suggested that spatial processes played a more important role in determining microbial compositional variation across space; which could be explained by the reinforced impacts of dispersal limitation in less fluid, spatially structured sediment habitat with diverse pre-existing communities. In summary, our findings suggested that the deterministic assembling and spatial constraints interact to shape microbial biogeography in AMD sediments; and provided implications that spatial processes should be considered when predicting microbial dynamics in response to severe environmental change across large spatial scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fiac002 | DOI Listing |
FEMS Microbiol Rev
December 2024
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93JZ, UK.
Although a large fraction of Earth's volume and most places beyond the planet lack life because physical and chemical conditions are too extreme, intriguing scientific questions are raised in many environments within or at the edges of life's niche space in which active life is absent. This review explores the environments in which active microorganisms do not occur. Within the known niche space for life, uninhabited, but habitable physical spaces potentially offer opportunities for hypothesis testing, such as using them as negative control environments to investigate the influence of life on planetary processes.
View Article and Find Full Text PDFFront Microbiol
December 2024
VERO Program, Texas A&M University, Canyon, TX, United States.
Introduction: The gastrointestinal microbiota profoundly influences the health and productivity of animals. This study aimed to characterize microbial community structures of the mouth, gastrointestinal tract (GIT), and feces of cattle.
Methods: Samples were collected from 18 Akaushi crossbred steers at harvest from multiple locations, including the oral cavity, rumen, abomasum, duodenum, jejunum, ileum, cecum, spiral colon, distal colon, and feces.
Appl Environ Microbiol
December 2024
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Soil microbial communities are pivotal to plant health and nutrient acquisition. It is becoming increasingly clear that many interactions, both among and between microbes and plants, are governed by small bioactive molecules or "secondary metabolites" that can aid in communication, competition, and nutrient uptake. Yet, secondary metabolite biogeography - who makes what, where, and why-is in its infancy.
View Article and Find Full Text PDFISME J
December 2024
UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA.
Fecal microbiota transplantation has been vital for establishing whether host phenotypes can be conferred through the microbiome. However, whether the existing microbial ecology along the mouse gastrointestinal tract can be recapitulated in germ-free mice colonized with stool remains unknown. We first identified microbes and their predicted functions specific to each of six intestinal regions in three cohorts of specific pathogen-free mice spanning two facilities.
View Article and Find Full Text PDFRecent advances in high-throughput approaches for estimating co-localization of microbes, such as SAMPL-seq, allow characterization of the biogeography of the gut microbiome longitudinally and at unprecedented scale. However, these high-dimensional data are complex and have unique noise properties. To address these challenges, we developed MCSPACE, a probabilistic AI method that infers from microbiome co-localization data spatially coherent assemblages of taxa, their dynamics over time, and their responses to perturbations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!