An ultrasensitive fluorescent water sensor based on a dipodal bimane-Cu(II) complex is reported here. This complex, which is non-fluorescent in the absence of water, demonstrates a remarkable turn-on fluorescence in the presence of extremely low (0.000786% v/v) concentrations of water, highly selective water-induced displacement of copper and restoration of the innate bimane fluorescence.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc07138fDOI Listing

Publication Analysis

Top Keywords

water sensor
8
dipodal bimane-ditriazole-dicuii
4
bimane-ditriazole-dicuii complex
4
complex serves
4
serves ultrasensitive
4
water
4
ultrasensitive water
4
sensor ultrasensitive
4
ultrasensitive fluorescent
4
fluorescent water
4

Similar Publications

Fluorescence-enhanced detection of sulfide ions through tuning the structure-activity relationship of gold nanoclusters.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:

The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.

View Article and Find Full Text PDF

This study addresses the significant issue of rapid land use and land cover (LULC) changes in Lahore District, which is critical for supporting ecological management and sustainable land-use planning. Understanding these changes is crucial for mitigating adverse environmental impacts and promoting sustainable development. The main goal is to evaluate historical LULC changes from 1994 to 2024 and forecast future trends for 2034 and 2044 utilizing the CA-Markov hybrid model combined with GIS methodologies.

View Article and Find Full Text PDF

Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.

View Article and Find Full Text PDF

Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.

View Article and Find Full Text PDF

The applications of polymeric materials are being constantly reviewed and improved. In the present world, the word hybrid, and the general idea of combining two or more inherently different approaches, designs, and materials is gaining significant attention. The area of sustainable materials with a low environmental impact is also rapidly evolving with many new discoveries, including the use of materials of a natural origin and countless combinations thereof.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!