Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896709 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1009810 | DOI Listing |
Microbiol Resour Announc
January 2025
Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA.
We present the complete chloroplast genome of the eelgrass from Monterey, California. The genome is circular and 144,675 bp in length. It consists of 82 protein-coding, 31 transfer RNA, and 8 ribosomal RNA genes and is 99.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana, USA.
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs).
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China.
The genomic-level characteristics play a pivotal role as genetic assets for the identification of species and phylogenetic analysis. Here, we sequenced and analyzed the mitochondrial genome of (Ratzeburg), which was first morphologically described in "Die Ichneumonen der Forstinsecten in forstlicher und entomologischer Beziehung." The motivation for this research arises from the necessity to comprehend the genetic composition and evolutionary history of , a genus of parasitic wasps with potential agricultural significance, which.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
School of Agriculture, Yunnan University, Kunming, China.
'Yunqie 9' was selected by the Horticultural Research Institute of Yunnan Academy of Agricultural Sciences based on the local environment of Yunnan Province. It is excellent in fruit quality and yield, but it is relatively weak in disease resistance. No information on complete chloroplast genome and position in the phylogeny of to restrict its genetic improvement.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Department of Management Information Systems, National Chung Hsing University, Taichung, 402, Taiwan.
Background: miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-scale biological data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!