Autophagy, not apoptosis, plays a role in lumen formation of eccrine gland organoids.

Chin Med J (Engl)

Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.

Published: January 2022

Background: Sweat secreted by eccrine sweat glands is transported to the skin surface through the lumen. The eccrine sweat gland develops from the initial solid bud to the final gland structure with a lumen, but how the lumen is formed and the mechanism of lumen formation have not yet been fully elucidated. This study aimed to investigate the mechanism of lumen formation of eccrine gland organoids (EGOs).

Methods: Human eccrine sweat glands were isolated from the skin for tissue culture, and the primary cultured cells were collected and cultured in Matrigel for 14 days in vitro. EGOs at different development days were collected for hematoxylin and eosin (H&E) staining to observe morphological changes and for immunofluorescence staining of proliferation marker Ki67, cellular motility marker filamentous actin (F-actin), and autophagy marker LC3B. Western blotting was used to detect the expression of Ki67, F-actin, and LC3B. Moreover, apoptosis was detected using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay kit, and the expression of poly (ADP-ribose) polymerase and Caspase-3 was detected by Western blot. In addition, 3-methyladenine (3MA) was used as an autophagy inhibitor to detect whether the formation of sweat glands can be effectively inhibited.

Results: The results showed that a single gland cell proliferated rapidly and formed EGOs on day 4. The earliest lumen formation was observed on day 6. From day 8 to day 14, the rate of lumen formation in EGOs increased significantly. The immunofluorescence and Western blot analyses showed that the expression of Ki67 gradually decreased with the increase in days, while the F-actin expression level did not change. Notably, the expression of autophagy marker LC3B was detected in the interior cells of EGOs as the apoptosis signal of EGOs was negative. Compared with the control group, the autophagy inhibitor 3MA can effectively limit the formation rate of the lumen and reduce the inner diameter of EGOs.

Conclusion: Using our model of eccrine gland 3D-reconstruction in Matrigel, we determined that autophagy rather than apoptosis plays a role in the lumen formation of EGOs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812595PMC
http://dx.doi.org/10.1097/CM9.0000000000001936DOI Listing

Publication Analysis

Top Keywords

lumen formation
24
eccrine gland
12
eccrine sweat
12
sweat glands
12
lumen
10
autophagy apoptosis
8
apoptosis plays
8
plays role
8
role lumen
8
formation
8

Similar Publications

Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1.

Proc Natl Acad Sci U S A

January 2025

Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.

View Article and Find Full Text PDF

Primary tracheo-bronchial adenoid cystic carcinoma: A surgical series with literature review.

Respirol Case Rep

January 2025

Thoracic Surgery Department Abderrahmen Mami University Hospital-Ariana, Faculty of Medicine of Tunis, University of Tunis El Manar Ariana Tunisia.

Tracheo-bronchial adenoid cystic carcinoma (TBACC) is a rare disease. Its treatment is mainly surgical. We herein describe the clinical and para-clinical varieties of TBACC as well as their surgical treatment and prognosis.

View Article and Find Full Text PDF

Bile salts are biosurfactants released into the intestinal lumen which play an important role in the solubilisation of fats and certain drugs. Their concentrations vary along the gastrointestinal tract (GIT). This is significant for implementation in physiologically based pharmacokinetic (PBPK) modelling to mechanistically capture drug absorption.

View Article and Find Full Text PDF

Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis.

View Article and Find Full Text PDF

Electrical Forces in Lumen Formation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Epithelial sheets evolved the capacity to fold and reform to create a lumen and therefore new environments. For humans, forming a lumen during gastrulation has been viewed as perhaps the most crucial biological process of our life and it is regulated by multiple electrical forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!