Functional ultrasound (fUS) is a rapidly emerging modality that enables whole-brain imaging of neural activity in awake and mobile rodents. To achieve sufficient blood flow sensitivity in the brain microvasculature, fUS relies on long ultrasound data acquisitions at high frame rates, posing high demands on the sampling and processing hardware. Here we develop an image reconstruction method based on deep learning that significantly reduces the amount of data necessary while retaining imaging performance. We trained convolutional neural networks to learn the power Doppler reconstruction function from sparse sequences of ultrasound data with compression factors of up to 95%. High-quality images from in vivo acquisitions in rats were used for training and performance evaluation. We demonstrate that time series of power Doppler images can be reconstructed with sufficient accuracy to detect the small changes in cerebral blood volume (~10%) characteristic of task-evoked cortical activation, even though the network was not formally trained to reconstruct such image series. The proposed platform may facilitate the development of this neuroimaging modality in any setting where dedicated hardware is not available or in clinical scanners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247015 | PMC |
http://dx.doi.org/10.1109/TMI.2022.3148728 | DOI Listing |
Neurol Res Pract
January 2025
Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-Universität Würzburg (JMU), Haus D7, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
Background: Comprehensive clinical data regarding factors influencing the individual disease course of patients with movement disorders treated with deep brain stimulation might help to better understand disease progression and to develop individualized treatment approaches.
Methods: The clinical core data set was developed by a multidisciplinary working group within the German transregional collaborative research network ReTune. The development followed standardized methodology comprising review of available evidence, a consensus process and performance of the first phase of the study.
J Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Periodontics, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Research Institute of Stomatology, Nanjing University, Nanjing, China.
Background: The severity of furcation involvement (FI) directly affected tooth prognosis and influenced treatment approaches. However, assessing, diagnosing, and treating molars with FI was complicated by anatomical and morphological variations. Cone-beam computed tomography (CBCT) enhanced diagnostic accuracy for detecting FI and measuring furcation defects.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Anatomy, Clinical Sciences Building, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308323, Singapore.
Study Objective: Student-centered learning and unconventional teaching modalities are gaining popularity in medical education. One notable approach involves engaging students in producing creative projects to complement the learning of preclinical topics. A systematic review was conducted to characterize the impact of creative project-based learning on metacognition and knowledge gains in medical students.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology has become increasingly vital. This study explores the application of deep learning to single-cell data clustering, with a particular focus on managing sparse, high-dimensional data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!