Introducing hydration layers to hydrogel microspheres (HMs) by coating the surface with liposomes can effectively reduce friction. However, the lubrication can be inactivated when the surface coatings are damaged. To endow HMs with the ability to form self-renewable hydration layers and maintain cellular homeostasis, rapamycin-liposome-incorporating hyaluronic acid-based HMs (RAPA@Lipo@HMs) were created using microfluidic technology and photopolymerization processes. The RAPA@Lipo@HMs improve joint lubrication by using a smooth rolling mechanism and continuously exposing liposomes on the outer surface to form self-renewable hydration layers via frictional wear. In addition, the released autophagy activator (rapamycin)-loaded cationic liposomes can target negatively charged cartilage through electrostatic interactions and maintain cellular homeostasis by increasing autophagy. Furthermore, the in vivo data showed that the RAPA@Lipo@HMs can alleviate joint wear and delay the progression of osteoarthritis. The RAPA@Lipo@HMs can provide efficient lubrication and potentially alleviate friction-related diseases such as osteoarthritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809544 | PMC |
http://dx.doi.org/10.1126/sciadv.abl6449 | DOI Listing |
ACS Nano
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Fouling-resistant coating materials have important applications in marine industry and biomedicine. Zwitterionic carboxybetaine polymers have demonstrated robust antibiofouling functionalities in experiments. In this work, we performed atomistic molecular dynamics simulations to study the molecular mechanism of hydration and antibiofouling of poly(carboxybetaine acrylamide) (polyCBAA) brush surfaces.
View Article and Find Full Text PDFSmall
December 2024
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48103, United States.
Sum frequency generation vibrational spectroscopy was applied to study the surface hydration and protein adsorption behavior on several polymer coatings based on pyridine, imidazole, and amine side groups along with vinyl or methacrylate backbones and their corresponding zwitterionic forms with carboxybetaine or sulfobetaine side chains, prepared by initiated chemical vapor deposition (iCVD). iCVD also enables facile tuning of the cross-linking density of the polymer coatings by blending in a cross-linker during the deposition, namely, 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl cyclotetrasiloxane. Our results show that both the low- and high-cross-linking density zwitterionic polymers exhibit significantly better antifouling activities compared to those of the polymers without the zwitterionic side chains.
View Article and Find Full Text PDFSmall Methods
December 2024
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
Aqueous zinc-ion batteries (AZIBs) are considered a promising choice for energy storage devices owing to the excellent safety and favorable capacity of the Zn anode. However, the uncontrolled dendrite growth of Zn anode severely constrains the practical applications of AZIBs. Herein, a novel ion enrichment layer of CuS is designed and constructed on the Zn foil surface to achieve dendrite-free Zn anode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!