Enhanced Speciation of Pyrogenic Organic Matter from Wildfires Enabled by 21 T FT-ICR Mass Spectrometry.

Anal Chem

National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States.

Published: February 2022

AI Article Synopsis

  • Wildfires create pyrogenic organic matter (pyOM), which includes char and soot, affecting soil composition, particularly in regards to carbon and nitrogen.
  • There’s a lack of understanding about nitrogen transformation in these wildfire-impacted systems, despite its importance.
  • A state-of-the-art 21 T FT-ICR mass spectrometry technique is used to analyze pyOM, allowing researchers to differentiate previously unresolved organic nitrogen compounds and providing valuable insights into the cycling of carbon and nitrogen in these ecosystems.

Article Abstract

Wildfires affect soils through the formation of pyrogenic organic matter (pyOM) (e.g., char and soot). While many studies examine the connection between pyOM persistence and carbon (C) composition, nitrogen (N) transformation in wildfire-impacted systems remains poorly understood. Thermal reactions in wildfires transform biomass into a highly complex, polyfunctional, and polydisperse organic mixture that challenges most mass analyzers. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the only mass analyzer that achieves resolving powers sufficient to separate species that differ in mass by the mass of an electron across a wide molecular weight range (/ 150-1500). We report enhanced speciation of organic N by positive-ion electrospray ionization (ESI) that leverages ultrahigh resolving power (/Δ = 1 800 000 at / 400) and mass accuracy (<10-100 ppb) achieved by FT-ICR MS at 21 T. Isobaric overlaps, roughly the mass of an electron ( = 548 μDa), are resolved across a wide molecular weight range and are more prevalent in positive ESI than negative ESI. The custom-built 21 T FT-ICR MS instrument identifies previously unresolved mass differences in CHNOS formulas and assigns more than 30 000 peaks in a pyOM sample. This is the first molecular catalogue of pyOM by positive-ion ESI 21 T FT-ICR MS and presents a method to provide new insight into terrestrial cycling of organic carbon and nitrogen in wildfire impacted ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c05018DOI Listing

Publication Analysis

Top Keywords

enhanced speciation
8
pyrogenic organic
8
organic matter
8
ft-icr mass
8
mass spectrometry
8
mass
7
speciation pyrogenic
4
organic
4
matter wildfires
4
wildfires enabled
4

Similar Publications

Phenological and morphological variation are widely viewed as a pivotal driver of ecological adaptation and speciation. Here, we investigate variation patterns of flowering phenology and morphological traits within and between O. rufipogon and O.

View Article and Find Full Text PDF

Towards a better knowledge of U(VI) speciation in weakly alkaline solution through an in-depth study of U(VI) intrinsic colloids.

Chemosphere

December 2024

Institut de Chimie Séparative de Marcoule, CEA, UMR 5257 CEA-CNRS-UM-ENSCM, 30207 Bagnols-sur-Cèze, France. Electronic address:

The formation of U(VI) intrinsic colloids has a non-negligible impact on the dissemination of actinides in the environment. It is therefore essential to better identify their nature, formation conditions, and stability domains. These specific points are especially important since the behavior of these elements in environment is generally estimated by geochemical transport modeling.

View Article and Find Full Text PDF

Calcium-organic matter fouling in nanofiltration: Synchrotron-based X-ray fluorescence and absorption near-edge structure spectroscopy for speciation.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.

View Article and Find Full Text PDF

Microplastics aggravate the adverse effects of methylmercury than inorganic mercury on zebrafish (Danio rerio).

Environ Pollut

December 2024

Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China. Electronic address:

The potential health risks of microplastics (MPs) and their combined exposure with heavy metals such as mercury (Hg) in aquatic environment are increasingly concerned recently. In this work, zebrafish embryos were exposed to different levels of polystyrene microplastics (PS-MPs, ∼0.1 μm) coupled with Hg(II) or/and MeHg at 20 μg/L, to investigate the tissue biodistribution and accumulation of PS-MPs and Hg species, and their interaction, as well as embryo toxicity, oxidative stress and metabolic profiles.

View Article and Find Full Text PDF

Effects of straw amendment on the bioavailability of selenite in soil and its mechanisms.

Ecotoxicol Environ Saf

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China. Electronic address:

Dissolved organic matter (DOM) released by straw returning for decomposition interacts with selenium (Se) in soil, which affects the speciation distribution of Se and its bioavailability. However, the relative mechanisms involved are slightly understood. This study investigated the effects of straw-derived DOM on two levels of exogenous selenite (low-Se and high-Se treatments) in two types of soil with distinct pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!