Same, but different: Binding effects in auditory, but not visual detection performance.

Atten Percept Psychophys

Department of Cognitive Psychology, University of Trier, Trier, Germany.

Published: February 2023

Responding to a stimulus leads to the integration of response and stimulus' features into an event file. Upon repetition of any of its features, the previous event file is retrieved, thereby affecting ongoing performance. Such integration-retrieval explanations exist for a number of sequential tasks (that measure these processes as 'binding effects') and are thought to underlie all actions. However, based on attentional orienting literature, Schöpper, Hilchey, et al. (2020) could show that binding effects are absent when participants detect visual targets in a sequence: In visual detection performance, there is simply a benefit for target location changes (inhibition of return). In contrast, Mondor and Leboe (2008) had participants detect auditory targets in a sequence, and found a benefit for frequency repetition - presumably reflecting a binding effect in auditory detection performance. In the current study, we conducted two experiments, that only differed in the modality of the target: Participants signaled the detection of a sound (N = 40) or of a visual target (N = 40). Whereas visual detection performance showed a pattern incongruent with binding assumptions, auditory detection performance revealed a non-spatial feature repetition benefit, suggesting that frequency was bound to the response. Cumulative reaction time distributions indicated that the absence of a binding effect in visual detection performance was not caused by overall faster responding. The current results show a clear limitation to binding accounts in action control: Binding effects are not only limited by task demands, but can entirely depend on target modality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935720PMC
http://dx.doi.org/10.3758/s13414-021-02436-5DOI Listing

Publication Analysis

Top Keywords

detection performance
24
visual detection
16
binding effects
12
event file
8
participants detect
8
targets sequence
8
auditory detection
8
binding
7
detection
7
performance
7

Similar Publications

Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).

Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.

View Article and Find Full Text PDF

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

High detection rate of parasitic load by qPCR targeting 18S rDNA in blood of patients with active leishmaniasis lesions.

Eur J Clin Microbiol Infect Dis

January 2025

Faculdade de Medicina, Laboratório de Parasitologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.

This study aimed to standardize qPCR techniques using these molecular markers kDNA and 18S rDNA across three sample types: peripheral blood, guanidine-treated blood, and tissue. The secondary objective is to evaluate the performance of 18S rDNA target in samples from 46 patients with confirmed tegumentary leishmaniasis. After obtaining the standard curve from reference strains with Leishmania, qPCR curves were standardizations and the Cts results of the patient samples were described using abstract measures.

View Article and Find Full Text PDF

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Objectives: To evaluate the performance of a 3D V-Net-based segmentation model of adrenal lesions in characterizing adrenal glands as normal or abnormal.

Methods: A total of 1086 CT image series with focal adrenal lesions were retrospectively collected, annotated, and used for the training of the adrenal lesion segmentation model. The dice similarity coefficient (DSC) of the test set was used to evaluate the segmentation performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!