Process-based working memory (WM) training in typically developing children usually leads to short- and long-term improvements on untrained WM tasks. However, results are mixed regarding far transfer to academic and cognitive abilities. Moreover, there is a lack of studies jointly evaluating the different types of transfer, using an adequate design and considering motivational factors. In addition, evidence is needed about how pre-training performance is related to individual differences in training-induced transfer. Therefore, this study aimed to implement and evaluate the efficacy of a computerized process-based WM training in typically developing school-age children. Near and far transfer effects were evaluated both immediately after training and after 6 months, as well as individual differences in training-induced transfer. The sample was composed of 89 typically developing children aged 9-10 years (M = 9.52, SD = 0.30), who were randomized to a WM training group or an active control group. They were evaluated at pre-training, post-training, and follow-up phases with measures of visuospatial and verbal WM, reading comprehension, math computation, and fluid intelligence. Results showed that the training group significantly improved performance in verbal WM and fluid intelligence compared to the active control group, immediately after training and after 6 months. Trained children with lower initial performance in verbal WM or fluid intelligence showed greater transfer gains. No group differences were found in motivational factors. Findings of this study suggest that process-based WM training may promote transfer to cognitive abilities and lead to compensation effects of individual differences in typically developing school-age children.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00426-022-01647-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!