Self-splicing of the precursor to large ribosomal RNA of yeast mitochondria leads not only to circles but also to lariats, structures that have not been observed before as products of self-splicing. Lariats were studied by electron microscopy after hybridization with an RNA complementary to the 3' half of the precursor. This leads to differentiation in at least two classes of lariats that vary in the position of the branch point. In all lariats the tail carries the 3' end, which suggests that a 5' end is used for branch formation with an internal nucleotide. The circles are formed from excised introns. They lack only three nucleotides encoded by mitochondrial DNA along with the 5'-terminal G added in the course of self-splicing. The diverse number of self-splicing products arising in vitro testifies to the considerable reactivity of this intron. The formation of lariats in an RNA catalyzed reaction may have implications for views on the mechanism of splicing of nuclear pre-mRNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0092-8674(86)90757-9DOI Listing

Publication Analysis

Top Keywords

formation lariats
8
self-splicing precursor
8
precursor large
8
large ribosomal
8
ribosomal rna
8
rna yeast
8
yeast mitochondria
8
self-splicing
5
lariats
5
lariats circles
4

Similar Publications

Human DBR1 deficiency impairs stress granule-dependent PKR antiviral immunity.

J Exp Med

January 2025

Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China.

The molecular mechanism by which inborn errors of the human RNA lariat-debranching enzyme 1 (DBR1) underlie brainstem viral encephalitis is unknown. We show here that the accumulation of RNA lariats in human DBR1-deficient cells interferes with stress granule (SG) assembly, promoting the proteasome degradation of at least G3BP1 and G3BP2, two key components of SGs. In turn, impaired assembly of SGs, which normally recruit PKR, impairs PKR activation and activity against viruses, including HSV-1.

View Article and Find Full Text PDF

Sequestration of DBR1 to stress granules promotes lariat intronic RNAs accumulation for heat-stress tolerance.

Nat Commun

September 2024

The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.

Heat stress (HS) poses a significant challenge to plant survival, necessitating sophisticated molecular mechanisms to maintain cellular homeostasis. Here, we identify SICKLE (SIC) as a key modulator of HS responses in Arabidopsis (Arabidopsis thaliana). SIC is required for the sequestration of RNA DEBRANCHING ENZYME 1 (DBR1), a rate-limiting enzyme of lariat intronic RNA (lariRNA) decay, into stress granules (SGs).

View Article and Find Full Text PDF

Interactions between proteins and α-helical peptides have been the focus of drug discovery campaigns. However, the large interfaces formed between multiple turns of an α-helix and a binding protein represent a significant challenge to inhibitor discovery. Modified peptides featuring helix-stabilizing macrocycles have shown promise as inhibitors of these interactions.

View Article and Find Full Text PDF

Microcin J25 (MccJ25), a lasso peptide antibiotic with a unique structure that resembles the lariat knot, has been a topic of intense interest since its discovery in 1992. The precursor (McjA) contains a leader and a core segment. McjB is a protease activated upon binding to the leader, and McjC converts the core segment into the mature MccJ25.

View Article and Find Full Text PDF

The protein levels of chloroplast photosynthetic genes and genes related to the chloroplast genetic apparatus vary to adapt to different conditions. However, the underlying mechanisms governing these variations remain unclear. The chloroplast intron Maturase K is encoded within the trnK intron and has been suggested to be required for splicing several group IIA introns, including the trnK intron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!