The limitation of lasing duration less than nanosecond order has been a major problem for realizing organic solid-state continues-wave (CW) lasers and organic semiconductor laser diodes. Triplets accumulation under CW excitation has been well recognized as a critical inhibiting factor. To overcome this issue, the utilization of thermally activated delayed fluorescence (TADF) emitters is a promising mechanism because of efficient reverse intersystem crossing. Herein, we model the triplet accumulation processes under lasing and propose the active utilization of TADF for lasing based on our simulation analysis. We used the rate constants experimentally determined from the optical properties of a boron difluoride curcuminoid fluorophore showing both TADF and lasing. We demonstrate that the intersystem crossing efficiency is gradually increased after the convergence of relaxation oscillation, i.e., terminating laser oscillation. In addition, we found that when the reverse intersystem crossing rate is close to the intersystem crossing rate, CW lasing becomes dominant.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c03983DOI Listing

Publication Analysis

Top Keywords

intersystem crossing
16
active utilization
8
reverse intersystem
8
tadf lasing
8
crossing rate
8
lasing
6
numerical study
4
study triplet
4
triplet dynamics
4
dynamics organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!