Cellulose nanocrystals (CNCs)-derived photonic materials have confirmed great potential in producing renewable optical and engineering areas. However, it remains challenging to simultaneously possess toughness, strength, and multiple responses for developing high-performance sensors, intelligent coatings, flexible textiles, and multifunctional devices. Herein, the authors report a facile and robust strategy that poly(ethylene glycol) dimethacrylate (PEGDMA) can be converged into the chiral nematic structure of CNCs by ultraviolet-triggered free radical polymerization in an N,N-dimethylformamide solvent system. The resulting CNC-poly(PEGDMA) composite exhibits impressive strength (42 MPa), stretchability (104%), toughness (31 MJ m ), and solvent resistance. Notably, it preserves vivid optical iridescence, displaying stretchable variation from red, yellow, to green responding to the applied mechanical stimuli. More interestingly, upon exposure to spraying moisture, it executes sensitive actuation (4.6° s ) and multiple complex 3D deformation behaviors, accompanied by synergistic iridescent appearances. Due to its structural anisotropy of CNC with typical left-handedness, the actuation shows the capability to generate a high probability (63%) of right-handed helical shapes, mimicking a coiled tendril. The authors envision that this versatile system with sustainability, robustness, mechanochromism, and specific actuating ability will open a sustainable avenue in mechanical sensors, stretchable optics, intelligent actuators, and soft robots.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202107105DOI Listing

Publication Analysis

Top Keywords

highly tough
4
tough stretchable
4
stretchable solvent-resistant
4
solvent-resistant cellulose
4
cellulose nanocrystal
4
nanocrystal photonic
4
photonic films
4
films mechanochromism
4
mechanochromism actuator
4
actuator properties
4

Similar Publications

Modern dentistry is turning towards natural sources to overcome the immunological, toxicological, aesthetic, and durability drawbacks of synthetic materials. Among the first biomaterials used as endosseous dental implants, mollusk shells also display unique features, such as high mechanical strength, superior toughness, hierarchical architecture, and layered, microporous structure. This review focusses on hydroxyapatite-a bioactive, osteoconductive, calcium-based material crucial for bone healing and regeneration.

View Article and Find Full Text PDF

A Review on Multi-Scale Toughening and Regulating Methods for Modern Concrete: From Toughening Theory to Practical Engineering Application.

Research (Wash D C)

December 2024

School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing, China.

Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering.

View Article and Find Full Text PDF

Integrating Hydrogels and Biomedical Plastics via In Situ Physical Entanglements and Covalent Bonding.

Adv Healthc Mater

December 2024

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.

Both rigid plastics and soft hydrogels find ample applications in engineering and medicine but bear their own disadvantages that limit their broader applications. Bonding these mechanically dissimilar materials may resolve these limitations, preserve their advantages, and offer new opportunities as biointerfaces. Here, a robust adhesion strategy is proposed to integrate highly entangled tough hydrogels and diverse plastics with high interfacial adhesion energy and strength.

View Article and Find Full Text PDF

Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor.

View Article and Find Full Text PDF

Silk Fibroin Hydrogel for Pulse Waveform Precise and Continuous Perception.

Adv Healthc Mater

December 2024

School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China.

Precise and continuous monitoring of blood pressure and cardiac function is of great importance for early diagnosis and timely treatment of cardiovascular diseases. The common tests rely on on-site diagnosis and bulky equipments, hindering early diagnosis. The emerging hydrogels have gained considerable attention in skin bioelectronics by virtue of the similarities to biological tissues and versatility in mechanical, electrical, and biofunctional engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!