Generalist herbivore response to volatile chemical induction varies along a gradient in soil salinization.

Sci Rep

Department of Biology, Eastern Michigan University, 441 Mark Jefferson Science Complex, Ypsilanti, MI, 48197, USA.

Published: February 2022

Elevated soil salinity directly modifies plant physiology and indirectly alters the biotic interactions that shape plant performance. However, it is unclear how soil salinization interacts with plant defenses to alter patterns of leaf consumption or herbivore survival, development, and performance. In this study, we carried out laboratory feeding trials and a common garden experiment to investigate how gradients in soil salinization interact with plant induction status (modified via exogenous application of methyl jasmonate [MeJA]) to influence feeding consumption and performance of the generalist herbivore Spodoptera exigua on tomato (Solanum lycoperscium) plants. Our results showed that S. exigua consumed less leaf tissue from tomatoes treated with ≥ 50 mM NaCl; at these higher salinity treatments, these herbivores were less likely to pupate and died more quickly. Treatment with MeJA only reduced leaf consumption in the 0 mM NaCl treatment. Our common garden study demonstrated that natural populations of leaf chewing herbivores were less likely to damage tomatoes treated with > 50 mM NaCl solutions. Treatment with MeJA in the common garden reduced damage from natural populations of herbivores, but only for salt treatments at the 50 mM NaCl concentration level and we did observe variation in herbivore damage between cohorts in common garden trials. These results suggest that both soil salinization and volatile jasmonate signals may generate complementary shifts in decreased plant quality for herbivores. Overall, our study concludes that soil salinization could be a potential driver in spatial patterns of variation in both herbivory and herbivore demography.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8807617PMC
http://dx.doi.org/10.1038/s41598-022-05764-0DOI Listing

Publication Analysis

Top Keywords

soil salinization
20
common garden
16
generalist herbivore
8
leaf consumption
8
tomatoes treated
8
treatment meja
8
natural populations
8
soil
6
salinization
5
plant
5

Similar Publications

Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.

Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.

View Article and Find Full Text PDF

Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold.

iScience

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.

This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.

View Article and Find Full Text PDF

Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.

View Article and Find Full Text PDF

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.

View Article and Find Full Text PDF

Introduction: Functional traits of desert plants exhibit remarkable responsiveness, adaptability and plasticity to environmental heterogeneity.

Methods: In this study, we measured six crucial plant functional traits (leaf carbon, leaf nitrogen, leaf phosphorus, leaf thickness, chlorophyll concentration, and plant height) and employed exemplar analysis to elucidate the effects of soil environmental heterogeneity on intraspecific traits variation in the high-moisture-salinity and low-moisture-salinity habitats of the Ebinur LakeWetland National Nature Reserve.

Results: The results showed that (1) The soil moisture and electrical conductivity heterogeneity showed significant differences between the two moisture-salinity habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!