Background: Hospitals in various countries such as the Netherlands investigate and analyse serious adverse events (SAEs) to learn from previous events and attempt to prevent recurrence. However, current methods for SAE analysis do not address the complexity of healthcare and investigations typically focus on single events on the hospital level. This hampers hospitals in their ambition to learn from SAEs. Integrating human factors thinking and using a holistic and more consistent method could improve learning from SAEs.
Aim: This study aims to develop a novel generic analysis method (GAM) to: (1) facilitate a holistic event analysis using a human factors perspective and (2) ease aggregate analysis of events across hospitals.
Methods: Multiple steps of carefully evaluating, testing and continuously refining prototypes of the method were performed. Various Dutch stakeholders in the field of patient safety were involved in each step. Theoretical experts were consulted, and the prototype was pretested using information-rich SAE reports from Dutch hospitals. Expert panels, engaging quality and safety experts and medical specialists from various hospitals were consulted for face and content validity evaluation. User test sessions concluded the development of the method.
Results: The final version of the GAM consists of a framework and affiliated questionnaire. GAM combines elements of three methods for SAE analysis currently practised by Dutch hospitals. It is structured according to the Systems Engineering Initiative for Patient Safety model, which incorporates a human factors perspective into the analysis. These eases aggregated analysis of SAEs across hospitals and helps to consider the complexity of healthcare work systems.
Conclusion: The GAM is a valuable new tool for hospitals to learn from SAEs. The method can facilitate a holistic aggregate analysis of SAEs across hospitals using a human factors perspective, and is now ready for further extensive testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808443 | PMC |
http://dx.doi.org/10.1136/bmjoq-2021-001637 | DOI Listing |
Angiogenesis
January 2025
Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).
View Article and Find Full Text PDFCurr Microbiol
January 2025
Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China.
Translation initiation, which involves numerous protein factors and coordinated control steps, represents the most complicated process during eukaryotic translation. However, the roles of eukaryotic translation initiation factor (eIF) in filamentous fungi are not well clarified. In this study, we investigated the function of eIF2Bα in Aspergillus oryzae, an industrially important filamentous fungus.
View Article and Find Full Text PDFGastric Cancer
January 2025
Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.
Adv Sci (Weinh)
January 2025
Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!