We prove the existence of multiple noise-induced transitions in the Lasota-Mackey map, which is a class of one-dimensional random dynamical system with additive noise. The result is achieved with the help of rigorous computer assisted estimates. We first approximate the stationary distribution of the random dynamical system and then compute certified error intervals for the Lyapunov exponent. We find that the sign of the Lyapunov exponent changes at least three times when increasing the noise amplitude. We also show numerical evidence that the standard non-rigorous numerical approximation by finite-time Lyapunov exponent is valid with our model for a sufficiently large number of iterations. Our method is expected to work for a broad class of nonlinear stochastic phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0070198 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!